Displaying 81 – 100 of 264

Showing per page

From multi-instantons to exact results

Jean Zinn-Justin (2003)

Annales de l’institut Fourier

In these notes, conjectures about the exact semi-classical expansion of eigenvalues of hamiltonians corresponding to potentials with degenerate minima, are recalled. They were initially motivated by semi-classical calculations of quantum partition functions using a path integral representation and have later been proven to a large extent, using the theory of resurgent functions. They take the form of generalized Bohr--Sommerfeld quantization formulae. We explain here their...

Gap universality of generalized Wigner and β -ensembles

László Erdős, Horng-Tzer Yau (2015)

Journal of the European Mathematical Society

We consider generalized Wigner ensembles and general β -ensembles with analytic potentials for any β 1 . The recent universality results in particular assert that the local averages of consecutive eigenvalue gaps in the bulk of the spectrum are universal in the sense that they coincide with those of the corresponding Gaussian β -ensembles. In this article, we show that local averaging is not necessary for this result, i.e. we prove that the single gap distributions in the bulk are universal. In fact,...

Generalized q-deformed Gaussian random variables

Marek Bożejko, Hiroaki Yoshida (2006)

Banach Center Publications

We produce generalized q-Gaussian random variables which have two parameters of deformation. One of them is, of course, q as for the usual q-deformation. We also investigate the corresponding Wick formulas, which will be described by some joint statistics on pair partitions.

Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group

Benjamin Cahen (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Let G be a quasi-Hermitian Lie group with Lie algebra 𝔤 and K be a compactly embedded subgroup of G . Let ξ 0 be a regular element of 𝔤 * which is fixed by K . We give an explicit G -equivariant diffeomorphism from a complex domain onto the coadjoint orbit 𝒪 ( ξ 0 ) of ξ 0 . This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where 𝒪 ( ξ 0 ) is associated with a unitary irreducible representation of G which is holomorphically...

Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold

Nalini Anantharaman, Stéphane Nonnenmacher (2007)

Annales de l’institut Fourier

We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized....

Hall's transformation via quantum stochastic calculus

Paula Cohen, Robin Hudson, K. Parthasarathy, Sylvia Pulmannová (1998)

Banach Center Publications

It is well known that Hall's transformation factorizes into a composition of two isometric maps to and from a certain completion of the dual of the universal enveloping algebra of the Lie algebra of the initial Lie group. In this paper this fact will be demonstrated by exhibiting each of the maps in turn as the composition of two isometries. For the first map we use classical stochastic calculus, and in particular a stochastic analogue of the Dyson perturbation expansion. For the second map we make...

High frequency limit of the Helmholtz equations.

Jean-David Benamou, François Castella, Theodoros Katsaounis, Benoit Perthame (2002)

Revista Matemática Iberoamericana

We derive the high frequency limit of the Helmholtz equations in terms of quadratic observables. We prove that it can be written as a stationary Liouville equation with source terms. Our method is based on the Wigner Transform, which is a classical tool for evolution dispersive equations. We extend its use to the stationary case after an appropriate scaling of the Helmholtz equation. Several specific difficulties arise here; first, the identification of the source term ( which does not share the...

How the μ-deformed Segal-Bargmann space gets two measures

Stephen Bruce Sontz (2010)

Banach Center Publications

This note explains how the two measures used to define the μ-deformed Segal-Bargmann space are natural and essentially unique structures. As is well known, the density with respect to Lebesgue measure of each of these measures involves a Macdonald function. Our primary result is that these densities are the solution of a system of ordinary differential equations which is naturally associated with this theory. We then solve this system and find the known densities as well as a "spurious" solution...

Index and dynamics of quantized contact transformations

Steven Zelditch (1997)

Annales de l'institut Fourier

Quantized contact transformations are Toeplitz operators over a contact manifold ( X , α ) of the form U χ = Π A χ Π , where Π : H 2 ( X ) L 2 ( X ) is a Szegö projector, where χ is a contact transformation and where A is a pseudodifferential operator over X . They provide a flexible alternative to the Kähler quantization of symplectic maps, and encompass many of the examples in the physics literature, e.g. quantized cat maps and kicked rotors. The index problem is to determine ind ( U χ ) when the principal symbol is unitary, or equivalently to determine...

Currently displaying 81 – 100 of 264