How small is the phase space in quantum field theory ?
We present a new proof of Janson’s strong hypercontractivity inequality for the Ornstein-Uhlenbeck semigroup in holomorphic algebras associated with CAR (canonical anticommutation relations) algebras. In the one generator case we calculate optimal bounds for t such that is a contraction as a map for arbitrary p ≥ 2. We also prove a logarithmic Sobolev inequality.
The abstract mathematical structure behind the positive energy quantization of linear classical systems is described. It is separated into three stages: the description of a classical system, the algebraic quantization and the Hilbert space quantization. Four kinds of systems are distinguished: neutral bosonic, neutral bosonic, charged bosonic and charged fermionic. The formalism that is described follows closely the usual constructions employed in quantum physics to introduce noninteracting quantum...
In this paper I discuss quantum systems whose Hamiltonians are non-Hermitian but whose energy levels are all real and positive. Such theories are required to be symmetric under , but not symmetric under and separately. Recently, quantum mechanical systems having such properties have been investigated in detail. In this paper I extend the results to quantum field theories. Among the systems that I discuss are and theories. These theories all have unexpected and remarkable properties. I discuss...