A construction of the general relativistic Boltzmann equation.
We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...
We present a domain decomposition theory on an interface problem for the linear transport equation between a diffusive and a non-diffusive region. To leading order, i.e. up to an error of the order of the mean free path in the diffusive region, the solution in the non-diffusive region is independent of the density in the diffusive region. However, the diffusive and the non-diffusive regions are coupled at the interface at the next order of approximation. In particular, our algorithm avoids iterating...
The study of the fluctuations in the steady state of a heated granular system is reviewed. A Boltzmann-Langevin description can be built requiring consistency with the equations for the one- and two-particle correlation functions. From the Boltzmann-Langevin equation, Langevin equations for the total energy and the transverse velocity field are derived. The existence of a fluctuation-dissipation relation for the transverse velocity field is also...
We propose a new formulation of the 3D Boltzmann non linear operator, without assuming Grad's angular cutoff hypothesis, and for intermolecular laws behaving as 1/rs, with s> 2. It involves natural pseudo differential operators, under a form which is analogous to the Landau operator. It may be used in the study of the associated equations, and more precisely in the non homogeneous framework.
Continuum mechanics (e.g., hydrodynamics, elasticity theory) is based on the assumption that a small set of fields provides a closed description on large space and time scales. Conditions governing the choice for these fields are discussed in the context of granular fluids and multi-component fluids. In the first case, the relevance of temperature or energy as a hydrodynamic field is justified. For mixtures, the use of a total temperature and single...
Approximation theory in the context of probability density function turns out to go beyond the classical idea of orthogonal projection. Special tools have to be designed so as to respect the nonnegativity of the approximate function. We develop here and justify from the theoretical point of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys. 83 (1996) 1021–1065] and based on an entropy minimization principle under moment constraints. We prove in particular a global...
Approximation theory in the context of probability density function turns out to go beyond the classical idea of orthogonal projection. Special tools have to be designed so as to respect the nonnegativity of the approximate function. We develop here and justify from the theoretical point of view an approximation procedure introduced by Levermore [Levermore, J. Stat. Phys.83 (1996) 1021–1065] and based on an entropy minimization principle under moment constraints. We prove in particular...
The entropy of an ideal gas, both in the case of classical and quantum particles, is maximised when the number particle density, linear momentum and energy are fixed. The dispersion law energy to momentum is chosen as linear or quadratic, corresponding to non-relativistic or relativistic behaviour.
This paper deals with explicit spectral gap estimates for the linearized Boltzmann operator with hard potentials (and hard spheres). We prove that it can be reduced to the Maxwellian case, for which explicit estimates are already known. Such a method is constructive, does not rely on Weyl's Theorem and thus does not require Grad's splitting. The more physical idea of the proof is to use geometrical properties of the whole collision operator. In a second part, we use the fact that the Landau operator...
An overview of recent results pertaining to the hydrodynamic description (both Newtonian and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic Maxwell models is presented. The use of this mathematical model allows us to get exact results for different problems. First, the Navier–Stokes constitutive equations with explicit expressions for the corresponding transport coefficients are derived by applying the Chapman–Enskog...
In questo contributo si discute qualche problema connesso alla derivazione delle equazioni cinetiche a partire dalla meccanica dei sistemi di particelle.