Previous Page 5

Displaying 81 – 98 of 98

Showing per page

Strong disorder in semidirected random polymers

N. Zygouras (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider a random walk in a random potential, which models a situation of a random polymer and we study the annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different. We also prove that in these cases the polymer path exhibits localization.

Superdiffusivity for brownian motion in a poissonian potential with long range correlation I: Lower bound on the volume exponent

Hubert Lacoin (2012)

Annales de l'I.H.P. Probabilités et statistiques

We study trajectories of d -dimensional Brownian Motion in Poissonian potential up to the hitting time of a distant hyper-plane. Our Poissonian potential V is constructed from a field of traps whose centers location is given by a Poisson Point Process and whose radii are IID distributed with a common distribution that has unbounded support; it has the particularity of having long-range correlation. We focus on the case where the law of the trap radii ν has power-law decay and prove that superdiffusivity...

Superdiffusivity for brownian motion in a poissonian potential with long range correlation II: Upper bound on the volume exponent

Hubert Lacoin (2012)

Annales de l'I.H.P. Probabilités et statistiques

This paper continues a study on trajectories of Brownian Motion in a field of soft trap whose radius distribution is unbounded. We show here that for both point-to-point and point-to-plane model the volume exponent (the exponent associated to transversal fluctuation of the trajectories) ξ is strictly less than 1 and give an explicit upper bound that depends on the parameters of the problem. In some specific cases, this upper bound matches the lower bound proved in the first part of this work and...

Tail estimates for homogenization theorems in random media

Daniel Boivin (2009)

ESAIM: Probability and Statistics

Consider a random environment in d given by i.i.d. conductances. In this work, we obtain tail estimates for the fluctuations about the mean for the following characteristics of the environment: the effective conductance between opposite faces of a cube, the diffusion matrices of periodized environments and the spectral gap of the random walk in a finite cube.

The continuous Coupled Cluster formulation for the electronic Schrödinger equation

Thorsten Rohwedder (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Nowadays, the Coupled Cluster (CC) method is the probably most widely used high precision method for the solution of the main equation of electronic structure calculation, the stationary electronic Schrödinger equation. Traditionally, the equations of CC are formulated as a nonlinear approximation of a Galerkin solution of the electronic Schrödinger equation, i.e. within a given discrete subspace. Unfortunately, this concept prohibits the direct application of concepts of nonlinear numerical analysis...

The discrete-time parabolic Anderson model with heavy-tailed potential

Francesco Caravenna, Philippe Carmona, Nicolas Pétrélis (2012)

Annales de l'I.H.P. Probabilités et statistiques

We consider a discrete-time version of the parabolic Anderson model. This may be described as a model for a directed ( 1 + d ) -dimensional polymer interacting with a random potential, which is constant in the deterministic direction and i.i.d. in the d orthogonal directions. The potential at each site is a positive random variable with a polynomial tail at infinity. We show that, as the size of the system diverges, the polymer extremity is localized almost surely at one single point which grows ballistically....

The local relaxation flow approach to universality of the local statistics for random matrices

László Erdős, Benjamin Schlein, Horng-Tzer Yau, Jun Yin (2012)

Annales de l'I.H.P. Probabilités et statistiques

We present a generalization of the method of the local relaxation flow to establish the universality of local spectral statistics of a broad class of large random matrices. We show that the local distribution of the eigenvalues coincides with the local statistics of the corresponding Gaussian ensemble provided the distribution of the individual matrix element is smooth and the eigenvalues {xj}j=1N are close to their classical location {γj}j=1N determined by the limiting density of eigenvalues. Under...

The spectrum of Schrödinger operators with random δ magnetic fields

Takuya Mine, Yuji Nomura (2009)

Annales de l’institut Fourier

We shall consider the Schrödinger operators on 2 with the magnetic field given by a nonnegative constant field plus random δ magnetic fields of the Anderson type or of the Poisson-Anderson type. We shall investigate the spectrum of these operators by the method of the admissible potentials by Kirsch-Martinelli. Moreover, we shall prove the lower Landau levels are infinitely degenerated eigenvalues when the constant field is sufficiently large, by estimating the growth order of the eigenfunctions...

Universality for certain hermitian Wigner matrices under weak moment conditions

Kurt Johansson (2012)

Annales de l'I.H.P. Probabilités et statistiques

We study the universality of the local eigenvalue statistics of Gaussian divisible Hermitian Wigner matrices. These random matrices are obtained by adding an independent GUE matrix to an Hermitian random matrix with independent elements, a Wigner matrix. We prove that Tracy–Widom universality holds at the edge in this class of random matrices under the optimal moment condition that there is a uniform bound on the fourth moment of the matrix elements. Furthermore, we show that universality holds...

Currently displaying 81 – 98 of 98

Previous Page 5