Displaying 221 – 240 of 591

Showing per page

Hierarchical pinning model in correlated random environment

Quentin Berger, Fabio Lucio Toninelli (2013)

Annales de l'I.H.P. Probabilités et statistiques

We consider the hierarchical disordered pinning model studied in (J. Statist. Phys.66 (1992) 1189–1213), which exhibits a localization/delocalization phase transition. In the case where the disorder is i.i.d. (independent and identically distributed), the question of relevance/irrelevance of disorder (i.e. whether disorder changes or not the critical properties with respect to the homogeneous case) is by now mathematically rather well understood (Probab. Theory Related Fields148 (2010) 159–175,...

Hydrodynamics of Inelastic Maxwell Models

V. Garzó, A. Santos (2011)

Mathematical Modelling of Natural Phenomena

An overview of recent results pertaining to the hydrodynamic description (both Newtonian and non-Newtonian) of granular gases described by the Boltzmann equation for inelastic Maxwell models is presented. The use of this mathematical model allows us to get exact results for different problems. First, the Navier–Stokes constitutive equations with explicit expressions for the corresponding transport coefficients are derived by applying the Chapman–Enskog...

Infinite queueing systems with tree structure

Lucie Fajfrová (2006)

Kybernetika

We focus on invariant measures of an interacting particle system in the case when the set of sites, on which the particles move, has a structure different from the usually considered set d . We have chosen the tree structure with the dynamics that leads to one of the classical particle systems, called the zero range process. The zero range process with the constant speed function corresponds to an infinite system of queues and the arrangement of servers in the tree structure is natural in a number...

Currently displaying 221 – 240 of 591