Displaying 281 – 300 of 591

Showing per page

Localisation pour des opérateurs de Schrödinger aléatoires dans L 2 ( d ) : un modèle semi-classique

Frédéric Klopp (1995)

Annales de l'institut Fourier

Dans L 2 ( d ) , nous démontrons un résultat de localisation exponentielle pour un opérateur de Schrödinger semi-classique à potentiel périodique perturbé par de petites perturbations aléatoires indépendantes identiquement distribuées placées au fond de chaque puits. Pour ce faire, on montre que notre opérateur, restreint à un intervalle d’énergie convenable, est unitairement équivalent à une matrice aléatoire infinie dont on contrôle bien les coefficients. Puis, pour ce type de matrices, on prouve un résultat...

Localization for Schrödinger operators with Poisson random potential

Abel Klein, Peter Hislop, François Germinet (2007)

Journal of the European Mathematical Society

We prove exponential and dynamical localization for the Schr¨odinger operator with a nonnegative Poisson random potential at the bottom of the spectrum in any dimension. We also conclude that the eigenvalues in that spectral region of localization have finite multiplicity. We prove similar localization results in a prescribed energy interval at the bottom of the spectrum provided the density of the Poisson process is large enough.

Long-range self-avoiding walk converges to α-stable processes

Markus Heydenreich (2011)

Annales de l'I.H.P. Probabilités et statistiques

We consider a long-range version of self-avoiding walk in dimension d > 2(α ∧ 2), where d denotes dimension and α the power-law decay exponent of the coupling function. Under appropriate scaling we prove convergence to brownian motion for α ≥ 2, and to α-stable Lévy motion for α < 2. This complements results by Slade [J. Phys. A21 (1988) L417–L420], who proves convergence to brownian motion for nearest-neighbor self-avoiding walk in high dimension.

Lower large deviations for the maximal flow through tilted cylinders in two-dimensional first passage percolation

Raphaël Rossignol, Marie Théret (2013)

ESAIM: Probability and Statistics

Equip the edges of the lattice ℤ2 with i.i.d. random capacities. A law of large numbers is known for the maximal flow crossing a rectangle in ℝ2 when the side lengths of the rectangle go to infinity. We prove that the lower large deviations are of surface order, and we prove the corresponding large deviation principle from below. This extends and improves previous large deviations results of Grimmett and Kesten [9] obtained for boxes of particular orientation.

Low-variance direct Monte Carlo simulations using importance weights

Husain A. Al-Mohssen, Nicolas G. Hadjiconstantinou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an efficient approach for reducing the statistical uncertainty associated with direct Monte Carlo simulations of the Boltzmann equation. As with previous variance-reduction approaches, the resulting relative statistical uncertainty in hydrodynamic quantities (statistical uncertainty normalized by the characteristic value of quantity of interest) is small and independent of the magnitude of the deviation from equilibrium, making the simulation of arbitrarily small deviations from equilibrium possible....

Mean-field evolution of fermionic systems

Marcello Porta (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

We study the dynamics of interacting fermionic systems, in the mean-field regime. We consider initial states which are close to quasi-free states and prove that, under suitable assumptions on the inital data and on the many-body interaction, the quantum evolution of the system is approximated by a time-dependent quasi-free state. In particular we prove that the evolution of the reduced one-particle density matrix converges, as the number of particles goes to infinity, to the solution of the time-dependent...

Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation

Jürg Fröhlich, Enno Lenzmann (2003/2004)

Séminaire Équations aux dérivées partielles

We discuss the Hartree equation arising in the mean-field limit of large systems of bosons and explain its importance within the class of nonlinear Schrödinger equations. Of special interest to us is the Hartree equation with focusing nonlinearity (attractive two-body interactions). Rigorous results for the Hartree equation are presented concerning: 1) its derivation from the quantum theory of large systems of bosons, 2) existence and stability of Hartree solitons, and 3) its point-particle (Newtonian)...

Miura opers and critical points of master functions

Evgeny Mukhin, Alexander Varchenko (2005)

Open Mathematics

Critical points of a master function associated to a simple Lie algebra 𝔤 come in families called the populations [11]. We prove that a population is isomorphic to the flag variety of the Langlands dual Lie algebra t 𝔤 . The proof is based on the correspondence between critical points and differential operators called the Miura opers. For a Miura oper D, associated with a critical point of a population, we show that all solutions of the differential equation DY=0 can be written explicitly in terms...

Mixing time for the Ising model : a uniform lower bound for all graphs

Jian Ding, Yuval Peres (2011)

Annales de l'I.H.P. Probabilités et statistiques

Consider Glauber dynamics for the Ising model on a graph of n vertices. Hayes and Sinclair showed that the mixing time for this dynamics is at least nlog n/f(Δ), where Δ is the maximum degree and f(Δ) = Θ(Δlog2Δ). Their result applies to more general spin systems, and in that generality, they showed that some dependence on Δ is necessary. In this paper, we focus on the ferromagnetic Ising model and prove that the mixing time of Glauber dynamics on any n-vertex graph is at least (1/4 + o(1))nlog n....

Currently displaying 281 – 300 of 591