Previous Page 3

Displaying 41 – 56 of 56

Showing per page

Stochastic approximations of the solution of a full Boltzmann equation with small initial data

Sylvie Meleard (2010)

ESAIM: Probability and Statistics

This paper gives an approximation of the solution of the Boltzmann equation by stochastic interacting particle systems in a case of cut-off collision operator and small initial data. In this case, following the ideas of Mischler and Perthame, we prove the existence and uniqueness of the solution of this equation and also the existence and uniqueness of the solution of the associated nonlinear martingale problem. 
Then, we first delocalize the interaction by considering a mollified Boltzmann...

Stochastic differential inclusions of Langevin type on Riemannian manifolds

Yuri E. Gliklikh, Andrei V. Obukhovskiĭ (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We introduce and investigate a set-valued analogue of classical Langevin equation on a Riemannian manifold that may arise as a description of some physical processes (e.g., the motion of the physical Brownian particle) on non-linear configuration space under discontinuous forces or forces with control. Several existence theorems are proved.

Stochastic Dynamics of Quantum Spin Systems

Adam Majewski, Robert Olkiewicz, Bogusław Zegarliński (1998)

Banach Center Publications

We show that recently introduced noncommutative L p -spaces can be used to constructions of Markov semigroups for quantum systems on a lattice.

Stochastic foundations of the universal dielectric response

Agnieszka Jurlewicz (2003)

Applicationes Mathematicae

We present a probabilistic model of the microscopic scenario of dielectric relaxation. We prove a limit theorem for random sums of a special type that appear in the model. By means of the theorem, we show that the presented approach to relaxation phenomena leads to the well known Havriliak-Negami empirical dielectric response provided the physical quantities in the relaxation scheme have heavy-tailed distributions. The mathematical model, presented here in the context of dielectric relaxation, can...

Study of a three component Cahn-Hilliard flow model

Franck Boyer, Céline Lapuerta (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we propose a new diffuse interface model for the study of three immiscible component incompressible viscous flows. The model is based on the Cahn-Hilliard free energy approach. The originality of our study lies in particular in the choice of the bulk free energy. We show that one must take care of this choice in order for the model to give physically relevant results. More precisely, we give conditions for the model to be well-posed and to satisfy algebraically and dynamically consistency...

Supercritical self-avoiding walks are space-filling

Hugo Duminil-Copin, Gady Kozma, Ariel Yadin (2014)

Annales de l'I.H.P. Probabilités et statistiques

In this article, we consider the following model of self-avoiding walk: the probability of a self-avoiding trajectory γ between two points on the boundary of a finite subdomain of d is proportional to μ - length ( γ ) . When μ is supercritical (i.e. μ l t ; μ c where μ c is the connective constant of the lattice), we show that the random trajectory becomes space-filling when taking the scaling limit.

Survival probability approach to the relaxation of a macroscopic system in the defect-diffusion framework

Paulina Hetman (2004)

Applicationes Mathematicae

The main objective of this paper is to present a new probabilistic model underlying the universal relaxation laws observed in many fields of science where we associate the survival probability of the system's state with the defect-diffusion framework. Our approach is based on the notion of the continuous-time random walk. To derive the properties of the survival probability of a system we explore the limit theorems concerning either the summation or the extremes: maxima and minima. The forms of...

Currently displaying 41 – 56 of 56

Previous Page 3