Page 1

Displaying 1 – 5 of 5

Showing per page

Finite element solution of the fundamental equations of semiconductor devices. II

Miloš Zlámal (2001)

Applications of Mathematics

In part I of the paper (see Zlámal [13]) finite element solutions of the nonstationary semiconductor equations were constructed. Two fully discrete schemes were proposed. One was nonlinear, the other partly linear. In this part of the paper we justify the nonlinear scheme. We consider the case of basic boundary conditions and of constant mobilities and prove that the scheme is unconditionally stable. Further, we show that the approximate solution, extended to the whole time interval as a piecewise...

Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis

Claire Chainais-Hillairet, Jian-Guo Liu, Yue-Jun Peng (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such equations arise from the theory of semiconductors and are composed of two continuity equations coupled with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the convergence of the scheme and then the existence of solutions to the problem. The key point of the proof relies on the construction of an approximate gradient of the electric potential which allows us to deal...

Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis

Claire Chainais-Hillairet, Jian-Guo Liu, Yue-Jun Peng (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such equations arise from the theory of semiconductors and are composed of two continuity equations coupled with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the convergence of the scheme and then the existence of solutions to the problem. The key point of the proof relies on the construction of an approximate gradient of the electric potential which allows us to deal...

Currently displaying 1 – 5 of 5

Page 1