Page 1

Displaying 1 – 3 of 3

Showing per page

Nonlinear boundary value problems describing mobile carrier transport in semiconductor devices

E. Z. Borevich, V. M. Chistyakov (2001)

Applications of Mathematics

The present paper describes mobile carrier transport in semiconductor devices with constant densities of ionized impurities. For this purpose we use one-dimensional partial differential equations. The work gives the proofs of global existence of solutions of systems of such kind, their bifurcations and their stability under the corresponding assumptions.

Numerical analysis of nonlinear model of excited carrier decay

Natalija Tumanova, Raimondas Čiegis, Mečislavas Meilūnas (2013)

Open Mathematics

This paper presents a mathematical model for photo-excited carrier decay in a semiconductor. Due to the carrier trapping states and recombination centers in the bandgap, the carrier decay process is defined by the system of nonlinear differential equations. The system of nonlinear ordinary differential equations is approximated by linearized backward Euler scheme. Some a priori estimates of the discrete solution are obtained and the convergence of the linearized backward Euler method is proved....

Numerical study of the systematic error in Monte Carlo schemes for semiconductors

Orazio Muscato, Wolfgang Wagner, Vincenza Di Stefano (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper studies the convergence behavior of Monte Carlo schemes for semiconductors. A detailed analysis of the systematic error with respect to numerical parameters is performed. Different sources of systematic error are pointed out and illustrated in a spatially one-dimensional test case. The error with respect to the number of simulation particles occurs during the calculation of the internal electric field. The time step error, which is related to the splitting of transport and electric field...

Currently displaying 1 – 3 of 3

Page 1