The Plane-Time in Which Paths of Inertional Motions Are Conics
We show what extra condition is necessary to be able to use the positive mass argument of Witten [12] on an asymptotically locally euclidean manifold. Specifically we show that the 'generalized positive action conjecture' holds if one assumes that the signature of the manifold has the correct value.
This paper reports on the recent proof of the bounded curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.
We prove the spacetime positive mass theorem in dimensions less than eight. This theorem asserts that for any asymptotically flat initial data set that satisfies the dominant energy condition, the inequality holds, where is the ADM energy-momentum vector. Previously, this theorem was only known for spin manifolds [38]. Our approach is a modification of the minimal hypersurface technique that was used by the last named author and S.-T. Yau to establish the time-symmetric case of this theorem...
Pour l’équation de Dirac sans masse à l’extérieur d’un trou noir de Kerr lent nous démontrons la complétude asymptotique. Nous introduisons une nouvelle tétrade de Newman-Penrose pour laquelle l’expression de l’équation ne contient pas de termes à longue portée artificiels. La technique principale utilisée est une estimation de Mourre. La géométrie proche de l’horizon exige d’appliquer une transformation unitaire avant de se retrouver dans une situation dans laquelle le générateur de dilatations...
0. Introduction and summary. The analysis of data from the gravitational-wave detectors that are currently under construction in several countries will be a challenging problem. The reason is that gravitational-vawe signals are expected to be extremely weak and often very rare. Therefore it will be of great importance to implement optimal statistical methods to extract all possible information about the signals from the noisy data sets. Careful statistical analysis based on correct application of...
We present a review of the spacecraft Doppler tracking technique used in broad band searches for gravitational waves in the millihertz frequency band. After deriving the transfer functions of a gravitational wave pulse and of the noise sources entering into the Doppler observable, we summarize the upper limits for the amplitudes of gravitational wave bursts, continuous, and of a stochastic background estimated by Doppler tracking experiments.
We investigate which three dimensional near-horizon metrics admit a compatible 1-form such that defines an Einstein-Weyl structure. We find explicit examples and see that some of the solutions give rise to Einstein-Weyl structures of dispersionless KP type and dispersionless Hirota (aka hyperCR) type.
We study TT-tensors on conformally flat 3-manifolds (M,g). The Cotton-York tensor linearized at g maps every symmetric tracefree tensor into one which is TT. The question as to whether this is the general solution to the TT-condition is viewed as a cohomological problem within an elliptic complex first found by Gasqui and Goldschmidt and reviewed in the present paper. The question is answered affirmatively when M is simply connected and has vanishing 2nd de Rham cohomology.