Displaying 1561 – 1580 of 2805

Showing per page

New technique for solving univariate global optimization

Djamel Aaid, Amel Noui, Mohand Ouanes (2017)

Archivum Mathematicum

In this paper, a new global optimization method is proposed for an optimization problem with twice differentiable objective function a single variable with box constraint. The method employs a difference of linear interpolant of the objective and a concave function, where the former is a continuous piecewise convex quadratic function underestimator. The main objectives of this research are to determine the value of the lower bound that does not need an iterative local optimizer. The proposed method...

Newton and conjugate gradient for harmonic maps from the disc into the sphere

Morgan Pierre (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We compute numerically the minimizers of the Dirichlet energy E ( u ) = 1 2 B 2 | u | 2 d x among maps u : B 2 S 2 from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous P 1 finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned...

Newton and conjugate gradient for harmonic maps from the disc into the sphere

Morgan Pierre (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We compute numerically the minimizers of the Dirichlet energy E ( u ) = 1 2 B 2 | u | 2 d x among maps u : B 2 S 2 from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous P1 finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which...

Newton methods for solving two classes of nonsmooth equations

Yan Gao (2001)

Applications of Mathematics

The paper is devoted to two systems of nonsmooth equations. One is the system of equations of max-type functions and the other is the system of equations of smooth compositions of max-type functions. The Newton and approximate Newton methods for these two systems are proposed. The Q-superlinear convergence of the Newton methods and the Q-linear convergence of the approximate Newton methods are established. The present methods can be more easily implemented than the previous ones, since they do not...

Niching mechanisms in evolutionary computations

Zdzisław Kowalczuk, Tomasz Białaszewski (2006)

International Journal of Applied Mathematics and Computer Science

Different types of niching can be used in genetic algorithms (GAs) or evolutionary computations (ECs) to sustain the diversity of the sought optimal solutions and to increase the effectiveness of evolutionary multi-objective optimization solvers. In this paper four schemes of niching are proposed, which are also considered in two versions with respect to the method of invoking: a continuous realization and a periodic one. The characteristics of these mechanisms are discussed, while as their performance...

Nonlinear conjugate gradient methods

Lukšan, Ladislav, Vlček, Jan (2015)

Programs and Algorithms of Numerical Mathematics

Modifications of nonlinear conjugate gradient method are described and tested.

Currently displaying 1561 – 1580 of 2805