Page 1

Displaying 1 – 11 of 11

Showing per page

Seven Proofs for the Subadditivity of Expected Shortfall

Paul Embrechts, Ruodu Wang (2015)

Dependence Modeling

Subadditivity is the key property which distinguishes the popular risk measures Value-at-Risk and Expected Shortfall (ES). In this paper we offer seven proofs of the subadditivity of ES, some found in the literature and some not. One of the main objectives of this paper is to provide a general guideline for instructors to teach the subadditivity of ES in a course. We discuss the merits and suggest appropriate contexts for each proof.With different proofs, different important properties of ES are...

Small perturbations with large effects on value-at-risk

Manuel L. Esquível, Luís Dimas, João Tiago Mexia, Philippe Didier (2013)

Discussiones Mathematicae Probability and Statistics

We show that in the delta-normal model there exist perturbations of the Gaussian multivariate distribution of the returns of a portfolio such that the initial marginal distributions of the returns are statistically undistinguishable from the perturbed ones and such that the perturbed V@R is close to the worst possible V@R which, under some reasonable assumptions, is the sum of the V@Rs of each of the portfolio assets.

Stability estimates of generalized geometric sums and their applications

Evgueni I. Gordienko (2004)

Kybernetika

The upper bounds of the uniform distance ρ k = 1 ν X k , k = 1 ν X ˜ k between two sums of a random number ν of independent random variables are given. The application of these bounds is illustrated by stability (continuity) estimating in models in queueing and risk theory.

Stable-1/2 bridges and insurance

Edward Hoyle, Lane P. Hughston, Andrea Macrina (2015)

Banach Center Publications

We develop a class of non-life reserving models using a stable-1/2 random bridge to simulate the accumulation of paid claims, allowing for an essentially arbitrary choice of a priori distribution for the ultimate loss. Taking an information-based approach to the reserving problem, we derive the process of the conditional distribution of the ultimate loss. The "best-estimate ultimate loss process" is given by the conditional expectation of the ultimate loss. We derive explicit expressions for the...

Systemic risk through contagion in a core-periphery structured banking network

Oliver Kley, Claudia Klüppelberg, Lukas Reichel (2015)

Banach Center Publications

We contribute to the understanding of how systemic risk arises in a network of credit-interlinked agents. Motivated by empirical studies we formulate a network model which, despite its simplicity, depicts the nature of interbank markets better than a symmetric model. The components of a vector Ornstein-Uhlenbeck process living on the nodes of the network describe the financial robustnesses of the agents. For this system, we prove a LLN for growing network size leading to a propagation of chaos result....

Currently displaying 1 – 11 of 11

Page 1