Displaying 441 – 460 of 982

Showing per page

Information, inflation, and interest

Lane P. Hughston, Andrea Macrina (2008)

Banach Center Publications

We propose a class of discrete-time stochastic models for the pricing of inflation-linked assets. The paper begins with an axiomatic scheme for asset pricing and interest rate theory in a discrete-time setting. The first axiom introduces a "risk-free" asset, and the second axiom determines the intertemporal pricing relations that hold for dividend-paying assets. The nominal and real pricing kernels, in terms of which the price index can be expressed, are then modelled by introducing a Sidrauski-type...

Integral representations of risk functions for basket derivatives

Michał Barski (2012)

Applicationes Mathematicae

The risk minimizing problem E [ l ( ( H - X T x , π ) ) ] π m i n in the multidimensional Black-Scholes framework is studied. Specific formulas for the minimal risk function and the cost reduction function for basket derivatives are shown. Explicit integral representations for the risk functions for l(x) = x and l ( x ) = x p , with p > 1 for digital, quantos, outperformance and spread options are derived.

Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence

Chunshien Li, Tai-Wei Chiang (2012)

International Journal of Applied Mathematics and Computer Science

Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued...

Introduction to Formal Preference Spaces

Eliza Niewiadomska, Adam Grabowski (2013)

Formalized Mathematics

In the article the formal characterization of preference spaces [1] is given. As the preference relation is one of the very basic notions of mathematical economics [9], it prepares some ground for a more thorough formalization of consumer theory (although some work has already been done - see [17]). There was an attempt to formalize similar results in Mizar, but this work seems still unfinished [18]. There are many approaches to preferences in literature. We modelled them in a rather illustrative...

Juegos no cooperativos con preferencias difusas.

Juan Tejada Cazorla (1988)

Trabajos de Investigación Operativa

El objetivo de este trabajo es el estudio de los juegos no cooperativos en los que los jugadores expresan sus preferencias sobre las consecuencias que se derivan de sus acciones mediante relaciones binarias difusas. El concepto de solución que se maneja es el de estrategias en equilibrio. La existencia de tales estrategias queda probada en el caso de que los jugadores definan sus preferencias sobre las consecuencias aleatorias mediante la extensión lineal introducida en Montero-Tejada (1986a).

Jugements de valeur et agrégation des préférences : la rencontre insolite du colza et de la littérature

Jacques Vialle (1996)

Mathématiques et Sciences Humaines

On se propose d'établir et d'analyser l'opinion collective d'une assemblée d'individus auxquels il a été demandé de lire puis de juger quinze extraits d' œuvres littéraires présentés sans titre ni nom d'auteur. Les évaluations portées par chaque juge sont converties en préférences individuelles que l'on traite ensuite au moyen d'une méthode combinatoire. L'établissement d'un ordre de préférence collectif ne constitue pas le but de cette étude, mais plutôt son point de départ ; il ne s'agit pas,...

Kurepa's functional equation on semigroups.

Bruce R. Ebanks (1982)

Stochastica

The functional equation to which the title refers is:F(x,y) + F(xy,z) = F(x,yz) + F(y,z),where x, y and z are in a commutative semigroup S and F: S x S --> X with (X,+) a divisible abelian group (Divisibility means that for any y belonging to X and natural number n there exists a (unique) solution x belonging to X to nx = y).

Currently displaying 441 – 460 of 982