Displaying 41 – 60 of 107

Showing per page

Existence et unicité de la solution pour un système de deux E.D.P.

Lahcen Ghannam (1989)

Publicacions Matemàtiques

We give some results on the existence, uniqueness and regularity of a nonlinear evolution system. This system models the viscoelastic behaviour of unicellular marine alga Acetabularia mediterrania when the calcium concentration varies. We show (with the aid of a fixed-point theorem) that the system admits a unique local solution in time.

Feeding Threshold for Predators Stabilizes Predator-Prey Systems

D. Bontje, B. W. Kooi, G. A.K. van Voorn, S.A.L.M Kooijman (2009)

Mathematical Modelling of Natural Phenomena

Since Rosenzweig showed the destabilisation of exploited ecosystems, the so called Paradox of enrichment, several mechanisms have been proposed to resolve this paradox. In this paper we will show that a feeding threshold in the functional response for predators feeding on a prey population stabilizes the system and that there exists a minimum threshold value above which the predator-prey system is unconditionally stable with respect to enrichment. Two models are analysed, the first being the classical...

From Quasispecies Theory to Viral Quasispecies: How Complexity has Permeated Virology

E. Domingo, C. Perales (2012)

Mathematical Modelling of Natural Phenomena

RNA viruses replicate as complex and dynamic mutant distributions. They are termed viral quasispecies, in recognition of the fundamental contribution of quasispecies theory in our understanding of error-prone replicative entities. Viral quasispecies have launched a fertile field of transdiciplinary research, both experimental and theoretical. Here we review the origin and some implications of the quasispecies concept, with emphasis on internal interactions...

Global Existence and Boundedness of Solutions to a Model of Chemotaxis

J. Dyson, R. Villella-Bressan, G. F. Webb (2008)

Mathematical Modelling of Natural Phenomena

A model of chemotaxis is analyzed that prevents blow-up of solutions. The model consists of a system of nonlinear partial differential equations for the spatial population density of a species and the spatial concentration of a chemoattractant in n-dimensional space. We prove the existence of solutions, which exist globally, and are L∞-bounded on finite time intervals. The hypotheses require nonlocal conditions on the species-induced production of the chemoattractant.

Hematologic Disorders and Bone Marrow–Peripheral Blood Dynamics

E. Afenya, S. Mundle (2010)

Mathematical Modelling of Natural Phenomena

Hematologic disorders such as the myelodysplastic syndromes (MDS) are discussed. The lingering controversies related to various diseases are highlighted. A simple biomathematical model of bone marrow - peripheral blood dynamics in the normal state is proposed and used to investigate cell behavior in normal hematopoiesis from a mathematical viewpoint. Analysis of the steady state and properties of the model are used to make postulations about the...

Host Factors in Viral Life Cycles

G. Pérez-Vilaró, J. Jungfleisch, V. Saludes, N. Scheller, M. Giménez-Barcons, J. Díez (2012)

Mathematical Modelling of Natural Phenomena

Viruses are obligate intracellular parasites that rely on the host cell for expansion. With the development of global analyses techniques like transcriptomics, proteomics and siRNA library screening of complete cellular gene sets, a large range of host cell factors have been discovered that either support or restrict virus growth. Here we summarize some of the recent findings and focus our discussion on the hepatitis C virus and the human immunodeficiency...

Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling

G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans (2012)

Mathematical Modelling of Natural Phenomena

HIV infection is multi-faceted and a multi-step process. The virus-induced pathogenic mechanisms are manifold and mediated through a range of positive and negative feedback regulations of immune and physiological processes engaged in virus-host interactions. The fundamental questions towards understanding the pathogenesis of HIV infection are now shifting to ‘dynamic’ categories: (i) why is the HIV-immune response equilibrium finally disrupted? (ii)...

In vitro Vasculogenesis Models Revisited - Measurement of VEGF Diffusion in Matrigel

T. Miura, R. Tanaka (2009)

Mathematical Modelling of Natural Phenomena

The circulatory system is one of the first to function during development. The earliest event in the system's development is vasculogenesis, whereby vascular progeniter cells form clusters called blood islands, which later fuse to form capillary networks. There exists a very good in vitro system that mimics this process. When HUVECs (Human Umbilical Vein Endothelial Cells) are cultured on Matrigel, they spontaneously form a capillary network structure. Two theoretical models have been proposed...

Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion

K. Böttger, H. Hatzikirou, A. Chauviere, A. Deutsch (2012)

Mathematical Modelling of Natural Phenomena

Gliomas are highly invasive brain tumors that exhibit high and spatially heterogeneous cell proliferation and motility rates. The interplay of proliferation and migration dynamics plays an important role in the invasion of these malignant tumors. We analyze the regulation of proliferation and migration processes with a lattice-gas cellular automaton (LGCA). We study and characterize the influence of the migration/proliferation dichotomy (also known...

Laplace Adomian decomposition method for solving a fish farm model

M. Sambath, K. Balachandran (2016)

Nonautonomous Dynamical Systems

In this work, a combined form of the Laplace transform method and the Adomian decomposition method is implemented to give an approximate solution of nonlinear systems of differential equations such as fish farm model with three components nutrient, fish and mussel. The technique is described and illustrated with a numerical example.

Mathematical analysis of a within-host model of malaria with immune effectors and Holling type II functional response

F. Gazori, M. Hesaaraki (2015)

Applicationes Mathematicae

In this paper, we consider a within-host model of malaria with Holling type II functional response. The model describes the dynamics of the blood-stage of parasites and their interaction with host cells, in particular red blood cells and immune effectors. First, we obtain equilibrium points of the system. The global stability of the disease-free equilibrium point is established when the basic reproduction ratio of infection is R₀< 1. Then the disease is controllable and dies out. In the absence...

Mathematical and Computational Models in Tumor Immunology

F. Pappalardo, A. Palladini, M. Pennisi, F. Castiglione, S. Motta (2012)

Mathematical Modelling of Natural Phenomena

The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies:...

Mathematical Biology Education: Modeling Makes Meaning

J. R. Jungck (2011)

Mathematical Modelling of Natural Phenomena

This special issue of Mathematical Modelling of Natural Phenomena on biomathematics education shares the work of fifteen groups at as many different institutions that have developed beautiful biological applications of mathematics that are different in three ways from much of what is currently available. First, many of these selections utilize current research in biomathematics rather than the well-known textbook examples that are at least a half-century old. Second, the selections focus on modules...

Mathematical model of tumour cord growth along the source of nutrient

S. Astanin, A. Tosin (2010)

Mathematical Modelling of Natural Phenomena

A mathematical model of the tumour growth along a blood vessel is proposed. The model employs the mixture theory approach to describe a tissue which consists of cells, extracellular matrix and liquid. The growing tumour tissue is supposed to be surrounded by the host tissue. Tumours where complete oxydation of glucose prevails are considered. Special attention is paid to consistent description of oxygen consumption and growth processes based on the energy balance. A finite difference numerical...

Mathematical Modelling of Tumour Dormancy

K. M. Page (2009)

Mathematical Modelling of Natural Phenomena

Many tumours undergo periods in which they apparently do not grow but remain at a roughly constant size for extended periods. This is termed tumour dormancy. The mechanisms responsible for dormancy include failure to develop an internal blood supply, individual tumour cells exiting the cell cycle and a balance between the tumour and the immune response to it. Tumour dormancy is of considerable importance in the natural history of cancer. In many cancers, and in particular in breast cancer, recurrence...

Currently displaying 41 – 60 of 107