Page 1

Displaying 1 – 14 of 14

Showing per page

Finite-time blow-up in a two-species chemotaxis-competition model with single production

Masaaki Mizukami, Yuya Tanaka (2023)

Archivum Mathematicum

This paper is concerned with blow-up of solutions to a two-species chemotaxis-competition model with production from only one species. In previous papers there are a lot of studies on boundedness for a two-species chemotaxis-competition model with productions from both two species. On the other hand, finite-time blow-up was recently obtained under smallness conditions for competitive effects. Now, in the biological view, the production term seems to promote blow-up phenomena; this implies that the...

Formalisation and methods of analysis of the fast xenobiotic mass transfer in the body

Volodymir G. Zinkovsky, Olga V. Zhuk, Michał Teodorczyk, Natalia Karpinchik (2009)

Applicationes Mathematicae

A novel discrimination and regression method for a quantitative determination of the relative efficiency of "fast" distribution processes of xenobiotics is discussed. An integral model-independent method for estimation of equilibrium tissue-to-plasma partition ratios is proposed.

Free boundary problems arising in tumor models

Avner Friedman (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider several simple models of tumor growth, described by systems of PDEs, and describe results on existence of solutions and on their asymptotic behavior. The boundary of the tumor region is a free boundary. In §1 the model assumes three types of cells, proliferating, quiescent and necrotic, and the corresponding PDE system consists of elliptic, parabolic and hyperbolic equations. The model in §2 assumes that the tumor has only proliferating cells. Finally in §3 we consider a model for treatment...

Free Boundary Problems Associated with Multiscale Tumor Models

A. Friedman (2009)

Mathematical Modelling of Natural Phenomena

The present paper introduces a tumor model with two time scales, the time t during which the tumor grows and the cycle time of individual cells. The model also includes the effects of gene mutations on the population density of the tumor cells. The model is formulated as a free boundary problem for a coupled system of elliptic, parabolic and hyperbolic equations within the tumor region, with nonlinear and nonlocal terms. Existence and uniqueness theorems are proved, and properties of the free boundary...

From Quasispecies Theory to Viral Quasispecies: How Complexity has Permeated Virology

E. Domingo, C. Perales (2012)

Mathematical Modelling of Natural Phenomena

RNA viruses replicate as complex and dynamic mutant distributions. They are termed viral quasispecies, in recognition of the fundamental contribution of quasispecies theory in our understanding of error-prone replicative entities. Viral quasispecies have launched a fertile field of transdiciplinary research, both experimental and theoretical. Here we review the origin and some implications of the quasispecies concept, with emphasis on internal interactions...

Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation

Weihua Geng, Shan Zhao (2013)

Molecular Based Mathematical Biology

The Poisson-Boltzmann (PB) model is an effective approach for the electrostatics analysis of solvated biomolecules. The nonlinearity associated with the PB equation is critical when the underlying electrostatic potential is strong, but is extremely difficult to solve numerically. In this paper, we construct two operator splitting alternating direction implicit (ADI) schemes to efficiently and stably solve the nonlinear PB equation in a pseudo-transient continuation approach. The operator splitting...

Fusion based analysis of ophthalmologic image data

Jiří Jan, Radim Kolář, Libor Kubečka, Jan Odstrčilík, Jiří Gazárek (2011)

Kybernetika

The paper presents an overview of image analysis activities of the Brno DAR group in the medical application area of retinal imaging. Particularly, illumination correction and SNR enhancement by registered averaging as preprocessing steps are briefly described; further mono- and multimodal registration methods developed for specific types of ophthalmological images, and methods for segmentation of optical disc, retinal vessel tree and autofluorescence areas are presented. Finally, the designed methods...

Currently displaying 1 – 14 of 14

Page 1