Page 1 Next

Displaying 1 – 20 of 39

Showing per page

Parametric inference for mixed models defined by stochastic differential equations

Sophie Donnet, Adeline Samson (2008)

ESAIM: Probability and Statistics

Non-linear mixed models defined by stochastic differential equations (SDEs) are considered: the parameters of the diffusion process are random variables and vary among the individuals. A maximum likelihood estimation method based on the Stochastic Approximation EM algorithm, is proposed. This estimation method uses the Euler-Maruyama approximation of the diffusion, achieved using latent auxiliary data introduced to complete the diffusion process between each pair of measurement instants. A tuned...

Particle Dynamics Methods of Blood Flow Simulations

A. Tosenberger, V. Salnikov, N. Bessonov, E. Babushkina, V. Volpert (2011)

Mathematical Modelling of Natural Phenomena

Various particle methods are widely used to model dynamics of complex media. In this work molecular dynamics and dissipative particles dynamics are applied to model blood flows composed of plasma and erythrocytes. The properties of the homogeneous particle fluid are studied. Capillary flows with erythrocytes are investigated.

Past, Present and Future of Brain Stimulation

J. Modolo, R. Edwards, J. Campagnaud, B. Bhattacharya, A. Beuter (2010)

Mathematical Modelling of Natural Phenomena

Recent technological advances including brain imaging (higher resolution in space and time), miniaturization of integrated circuits (nanotechnologies), and acceleration of computation speed (Moore’s Law), combined with interpenetration between neuroscience, mathematics, and physics have led to the development of more biologically plausible computational models and novel therapeutic strategies. Today, mathematical models of irreversible medical conditions...

Pattern and Waves for a Model in Population Dynamics with Nonlocal Consumption of Resources

S. Genieys, V. Volpert, P. Auger (2010)

Mathematical Modelling of Natural Phenomena

We study a reaction-diffusion equation with an integral term describing nonlocal consumption of resources in population dynamics. We show that a homogeneous equilibrium can lose its stability resulting in appearance of stationary spatial structures. They can be related to the emergence of biological species due to the intra-specific competition and random mutations. Various types of travelling waves are observed.

Patterns, Memory and Periodicity in Two-Neuron Delayed Recurrent Inhibitory Loops

J. Ma, J. Wu (2010)

Mathematical Modelling of Natural Phenomena

We study the coexistence of multiple periodic solutions for an analogue of the integrate-and-fire neuron model of two-neuron recurrent inhibitory loops with delayed feedback, which incorporates the firing process and absolute refractory period. Upon receiving an excitatory signal from the excitatory neuron, the inhibitory neuron emits a spike with a pattern-related delay, in addition to the synaptic delay. We present a theoretical framework to view...

PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic

Benoît Perthame (2004)

Applications of Mathematics

Modeling the movement of cells (bacteria, amoeba) is a long standing subject and partial differential equations have been used several times. The most classical and successful system was proposed by Patlak and Keller & Segel and is formed of parabolic or elliptic equations coupled through a drift term. This model exhibits a very deep mathematical structure because smooth solutions exist for small initial norm (in the appropriate space) and blow-up for large norms. This reflects experiments on...

Periodic dynamics in a model of immune system

Marek Bodnar, Urszula Foryś (2000)

Applicationes Mathematicae

The aim of this paper is to study periodic solutions of Marchuk's model, i.e. the system of ordinary differential equations with time delay describing the immune reactions. The Hopf bifurcation theorem is used to show the existence of a periodic solution for some values of the delay. Periodic dynamics caused by periodic immune reactivity or periodic initial data functions are compared. Autocorrelation functions are used to check the periodicity or quasiperiodicity of behaviour.

Periodic Solutions in a Mathematical Model for the Treatment of Chronic Myelogenous Leukemia

A. Halanay (2012)

Mathematical Modelling of Natural Phenomena

Existence and stability of periodic solutions are studied for a system of delay differential equations with two delays, with periodic coefficients. It models the evolution of hematopoietic stem cells and mature neutrophil cells in chronic myelogenous leukemia under a periodic treatment that acts only on mature cells. Existence of a guiding function leads to the proof of the existence of a strictly positive periodic solution by a theorem of Krasnoselskii....

Peristaltic Pumping of Solid Particles Immersed in a Viscoelastic Fluid

J. Chrispell, L. Fauci (2011)

Mathematical Modelling of Natural Phenomena

Peristaltic pumping of fluid is a fundamental method of transport in many biological processes. In some instances, particles of appreciable size are transported along with the fluid, such as ovum transport in the oviduct or kidney stones in the ureter. In some of these biological settings, the fluid may be viscoelastic. In such a case, a nonlinear constitutive equation to describe the evolution of the viscoelastic contribution to the stress tensor...

Picture languages in automatic radiological palm interpretation

Ryszard Tadeusiewicz, Marek Ogiela (2005)

International Journal of Applied Mathematics and Computer Science

The paper presents a new technique for cognitive analysis and recognition of pathological wrist bone lesions. This method uses AI techniques and mathematical linguistics allowing us to automatically evaluate the structure of the said bones, based on palm radiological images. Possibilities of computer interpretation of selected images, based on the methodology of automatic medical image understanding, as introduced by the authors, were created owing to the introduction of an original relational description...

Plant Growth and Development - Basic Knowledge and Current Views

V. Brukhin, N. Morozova (2010)

Mathematical Modelling of Natural Phenomena

One of the most intriguing questions in life science is how living organisms develop and maintain their predominant form and shape via the cascade of the processes of differentiation starting from the single cell. Mathematical modeling of these developmental processes could be a very important tool to properly describe the complex processes of evolution and geometry of morphogenesis in time and space. Here, we summarize the most important biological knowledge on plant development, exploring the...

Currently displaying 1 – 20 of 39

Page 1 Next