Page 1 Next

Displaying 1 – 20 of 41

Showing per page

Calculation of the magnetic field due to a bioelectric current dipole in an ellipsoid

Andrei Irimia (2008)

Applications of Mathematics

The bioelectric current dipole model is important both theoretically and computationally in the study of electrical activity in the brain and stomach due to the resemblance of the shape of these two organs to an ellipsoid. To calculate the magnetic field 𝐁 due to a dipole in an ellipsoid, one must evaluate truncated series expansions involving ellipsoidal harmonics 𝔼 n m , which are products of Lamé functions. In this article, we extend a strictly analytic model (G. Dassios and F. Kariotou, J. Math....

Cancer as Multifaceted Disease

A. Friedman (2012)

Mathematical Modelling of Natural Phenomena

Cancer has recently overtaken heart disease as the world’s biggest killer. Cancer is initiated by gene mutations that result in local proliferation of abnormal cells and their migration to other parts of the human body, a process called metastasis. The metastasized cancer cells then interfere with the normal functions of the body, eventually leading to death. There are two hundred types of cancer, classified by their point of origin. Most of them...

Cell Modelling of Hematopoiesis

N. Bessonov, L. Pujo-Menjouet, V. Volpert (2010)

Mathematical Modelling of Natural Phenomena

In this work, we introduce a new software created to study hematopoiesis at the cell population level with the individually based approach. It can be used as an interface between theoretical works on population dynamics and experimental observations. We show that this software can be useful to study some features of normal hematopoiesis as well as some blood diseases such as myelogenous leukemia. It is also possible to simulate cell communication and the formation of cell colonies in the bone marrow. ...

Cell-to-muscle homogenization. Application to a constitutive law for the myocardium

Denis Caillerie, Ayman Mourad, Annie Raoult (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Cell-to-Muscle homogenization. Application to a constitutive law for the myocardium

Denis Caillerie, Ayman Mourad, Annie Raoult (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Characterization of lung tumor subtypes through gene expression cluster validity assessment

Giorgio Valentini, Francesca Ruffino (2006)

RAIRO - Theoretical Informatics and Applications

The problem of assessing the reliability of clusters patients identified by clustering algorithms is crucial to estimate the significance of subclasses of diseases detectable at bio-molecular level, and more in general to support bio-medical discovery of patterns in gene expression data. In this paper we present an experimental analysis of the reliability of clusters discovered in lung tumor patients using DNA microarray data. In particular we investigate if subclasses of lung adenocarcinoma...

Chemotaxis models with a threshold cell density

Dariusz Wrzosek (2008)

Banach Center Publications

We consider a quasilinear parabolic system which has the structure of Patlak-Keller-Segel model of chemotaxis and contains a class of models with degenerate diffusion. A cell population is described in terms of volume fraction or density. In the latter case, it is assumed that there is a threshold value which the density of cells cannot exceed. Existence and uniqueness of solutions to the corresponding initial-boundary value problem and existence of space inhomogeneous stationary solutions are discussed....

Comparison of six models of antiangiogenic therapy

Andrzej Świerniak (2009)

Applicationes Mathematicae

Six models of antiangiogenic therapy are compared and analyzed from control-theoretic point of view. All of them consist of a model of tumor growth bounded by the capacity of a vascular network developed by the tumor in the process of angiogenesis and different models of dynamics of this network, and are based on the idea proposed by Hahnfeldt et al. Moreover, we analyse optimal control problems resulting from their use in treatment protocol design.

Currently displaying 1 – 20 of 41

Page 1 Next