Page 1

Displaying 1 – 16 of 16

Showing per page

La statistica nelle prove cliniche

Mauro Gasparini (2003)

Bollettino dell'Unione Matematica Italiana

Si descrivono le attività e le responsabilità dello statistico professionale nella conduzione di una prova clinica in una industria farmaceutica o in un ente di ricerca.

Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system

Yutaro Chiyo (2023)

Archivum Mathematicum

This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.

Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems

Stephan Luckhaus, Yoshie Sugiyama (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the following reaction-diffusion equation: ( KS ) u t = · u m - u q - 1 v , x N , 0 < t < , 0 = Δ v - v + u , x N , 0 < t < , u ( x , 0 ) = u 0 ( x ) , x N , where N 1 , m > 1 , q max { m + 2 N , 2 } .
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)] it was shown that in the case of q max { m + 2 N , 2 } , the above problem (KS) is solvable globally in time for “small L N ( q - m ) 2 data”. Moreover, the decay of the solution (u,v) in L p ( N ) was proved. In this paper, we consider the case of “ q max { m + 2 N , 2 } and small L data” with any fixed N ( q - m ) 2 and show that (i) there exists a time global solution (u,v) of (KS) and it decays to...

Local Bifurcations in a Nonlinear Model of a Bioreactor

Dimitrova, Neli (2009)

Serdica Journal of Computing

This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.We consider a nonlinear model of a continuously stirred bioreactor and study the stability of the equilibrium points with respect to practically important model parameters. We determine regions in the parameter space where the steady states undergo transcritical and Hopf bifurcations. In the latter case, the stability of the emerged limit cycles is also studied. Numerical simulations in the computer algebra...

Locally weighted neural networks for an analysis of the biosensor response

Romas Baronas, Feliksas Ivanauskas, Romualdas Maslovskis, Marijus Radavičius, Pranas Vaitkus (2007)

Kybernetika

This paper presents a semi-global mathematical model for an analysis of a signal of amperometric biosensors. Artificial neural networks were applied to an analysis of the biosensor response to multi-component mixtures. A large amount of the learning and test data was synthesized using computer simulation of the biosensor response. The biosensor signal was analyzed with respect to the concentration of each component of the mixture. The paradigm of locally weighted linear regression was used for retraining...

Logistic equations in tumour growth modelling

Urszula Foryś, Anna Marciniak-Czochra (2003)

International Journal of Applied Mathematics and Computer Science

The aim of this paper is to present some approaches to tumour growth modelling using the logistic equation. As the first approach the well-known ordinary differential equation is used to model the EAT in mice. For the same kind of tumour, a logistic equation with time delay is also used. As the second approach, a logistic equation with diffusion is proposed. In this case a delay argument in the reaction term is also considered. Some mathematical properties of the presented models are studied in...

Currently displaying 1 – 16 of 16

Page 1