Page 1

Displaying 1 – 16 of 16

Showing per page

Hematologic Disorders and Bone Marrow–Peripheral Blood Dynamics

E. Afenya, S. Mundle (2010)

Mathematical Modelling of Natural Phenomena

Hematologic disorders such as the myelodysplastic syndromes (MDS) are discussed. The lingering controversies related to various diseases are highlighted. A simple biomathematical model of bone marrow - peripheral blood dynamics in the normal state is proposed and used to investigate cell behavior in normal hematopoiesis from a mathematical viewpoint. Analysis of the steady state and properties of the model are used to make postulations about the...

High Resolution Tracking of Cell Membrane Dynamics in Moving Cells: an Electrifying Approach

R.A. Tyson, D.B.A. Epstein, K.I. Anderson, T. Bretschneider (2010)

Mathematical Modelling of Natural Phenomena

Cell motility is an integral part of a diverse set of biological processes. The quest for mathematical models of cell motility has prompted the development of automated approaches for gathering quantitative data on cell morphology, and the distribution of molecular players involved in cell motility. Here we review recent approaches for quantifying cell motility, including automated cell segmentation and tracking. Secondly, we present our own novel...

High-order WENO scheme for polymerization-type equations*

Pierre Gabriel, Léon Matar Tine (2010)

ESAIM: Proceedings

Polymerization of proteins is a biochemical process involved in different diseases. Mathematically, it is generally modeled by aggregation-fragmentation-type equations. In this paper we consider a general polymerization model and propose a high-order numerical scheme to investigate the behavior of the solution. An important property of the equation is the mass conservation. The WENO scheme is built to preserve the total mass of proteins along time....

Homogeneous Systems with a Quiescent Phase

K. P. Hadeler (2008)

Mathematical Modelling of Natural Phenomena

Recently the effect of a quiescent phase (or dormant/resting phase in applications) on the dynamics of a system of differential equations has been investigated, in particular with respect to stability properties of stationary points. It has been shown that there is a general phenomenon of stabilization against oscillations which can be cast in rigorous form. Here we investigate, for homogeneous systems, the effect of a quiescent phase, and more generally, a phase with slower dynamics. We show that...

Homogenization of a carcinogenesis model with different scalings with the homogenization parameter

Isabell Graf, Malte A. Peter (2014)

Mathematica Bohemica

In the context of periodic homogenization based on two-scale convergence, we homogenize a linear system of four coupled reaction-diffusion equations, two of which are defined on a manifold. The system describes the most important subprocesses modeling the carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic reticulum, which constitutes a fine structure inside the cell....

Host Factors in Viral Life Cycles

G. Pérez-Vilaró, J. Jungfleisch, V. Saludes, N. Scheller, M. Giménez-Barcons, J. Díez (2012)

Mathematical Modelling of Natural Phenomena

Viruses are obligate intracellular parasites that rely on the host cell for expansion. With the development of global analyses techniques like transcriptomics, proteomics and siRNA library screening of complete cellular gene sets, a large range of host cell factors have been discovered that either support or restrict virus growth. Here we summarize some of the recent findings and focus our discussion on the hepatitis C virus and the human immunodeficiency...

Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling

G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans (2012)

Mathematical Modelling of Natural Phenomena

HIV infection is multi-faceted and a multi-step process. The virus-induced pathogenic mechanisms are manifold and mediated through a range of positive and negative feedback regulations of immune and physiological processes engaged in virus-host interactions. The fundamental questions towards understanding the pathogenesis of HIV infection are now shifting to ‘dynamic’ categories: (i) why is the HIV-immune response equilibrium finally disrupted? (ii)...

Currently displaying 1 – 16 of 16

Page 1