Displaying 61 – 80 of 159

Showing per page

Growth of heterotrophe and autotrophe populations in an isolated terrestrial environment

Piotr Paweł Szopa, Monika Joanna Piotrowska (2011)

Applicationes Mathematicae

We consider the model, proposed by Dawidowicz and Zalasiński, describing the interactions between the heterotrophic and autotrophic organisms coexisting in a terrestrial environment with available oxygen. We modify this model by assuming intraspecific competition between heterotrophic organisms. Moreover, we introduce a diffusion of both types of organisms and oxygen. The basic properties of the extended model are examined and illustrated by numerical simulations.

Homogeneous Systems with a Quiescent Phase

K. P. Hadeler (2008)

Mathematical Modelling of Natural Phenomena

Recently the effect of a quiescent phase (or dormant/resting phase in applications) on the dynamics of a system of differential equations has been investigated, in particular with respect to stability properties of stationary points. It has been shown that there is a general phenomenon of stabilization against oscillations which can be cast in rigorous form. Here we investigate, for homogeneous systems, the effect of a quiescent phase, and more generally, a phase with slower dynamics. We show that...

Hybrid matrix models and their population dynamic consequences

Sanyi Tang (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, the main purpose is to reveal what kind of qualitative dynamical changes a continuous age-structured model may undergo as continuous reproduction is replaced with an annual birth pulse. Using the discrete dynamical system determined by the stroboscopic map we obtain an exact periodic solution of system with density-dependent fertility and obtain the threshold conditions for its stability. We also present formal proofs of the supercritical flip bifurcation at the bifurcation as well...

Hybrid matrix models and their population dynamic consequences

Sanyi Tang (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, the main purpose is to reveal what kind of qualitative dynamical changes a continuous age-structured model may undergo as continuous reproduction is replaced with an annual birth pulse. Using the discrete dynamical system determined by the stroboscopic map we obtain an exact periodic solution of system with density-dependent fertility and obtain the threshold conditions for its stability. We also present formal proofs of the supercritical flip bifurcation at the bifurcation as...

Large time behavior in a density-dependent population dynamics problem with age structure and child care

Vladas Skakauskas (2003)

Banach Center Publications

Two asexual density-dependent population dynamics models with age-dependence and child care are presented. One of them includes the random diffusion while in the other the population is assumed to be non-dispersing. The population consists of the young (under maternal care), juvenile, and adult classes. Death moduli of the juvenile and adult classes in both models are decomposed into the sum of two terms. The first presents death rate by the natural causes while the other describes the environmental...

Limitation and Regulation of Ecological Populations: a Meta-analysis of Tipula paludosa Field Data

R. P. Blackshaw, S. V. Petrovskii (2010)

Mathematical Modelling of Natural Phenomena

Whether the size of an animal population is environmentally limited or regulated by density dependent negative feedback mechanisms is of ecological interest. Proponents of limitation theory have issued a set of specific challenges which are addressed in this paper using field data for the insect Tipula paludosa. This species is known to be subject to population crashes caused by adverse environmental conditions and assumed to be limited. We re-examine published data in support of this hypothesis...

Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource

L. M. Abia, O. Angulo, J. C. López-Marcos, M. A. López-Marcos (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we study the numerical approximation of a size-structured population model whose dependency on the environment is managed by the evolution of a vital resource. We show that this is a difficult task: some numerical methods are not suitable for a long-time integration. We analyze the reasons for the failure.

Lotka-Volterra type predator-prey models: Comparison of hidden and explicit resources with a transmissible disease in the predator species

Luciana Assis, Malay Banerjee, Moiseis Cecconello, Ezio Venturino (2018)

Applications of Mathematics

The paper deals with two mathematical models of predator-prey type where a transmissible disease spreads among the predator species only. The proposed models are analyzed and compared in order to assess the influence of hidden and explicit alternative resource for predator. The analysis shows boundedness as well as local stability and transcritical bifurcations for equilibria of systems. Numerical simulations support our theoretical analysis.

Mathematical Modeling Describing the Effect of Fishing and Dispersion on Hermaphrodite Population Dynamics

S. Ben Miled, A. Kebir, M. L. Hbid (2010)

Mathematical Modelling of Natural Phenomena

In order to study the impact of fishing on a grouper population, we propose in this paper to model the dynamics of a grouper population in a fishing territory by using structured models. For that purpose, we have integrated the natural population growth, the fishing, the competition for shelter and the dispersion. The dispersion was considered as a consequence of the competition. First we prove, that the grouper stocks may be less sensitive to the...

Microscale Complexity in the Ocean: Turbulence, Intermittency and Plankton Life

L. Seuront (2008)

Mathematical Modelling of Natural Phenomena

This contribution reviews the nonlinear stochastic properties of turbulent velocity and passive scalar intermittent fluctuations in Eulerian and Lagrangian turbulence. These properties are illustrated with original data sets of (i) velocity fluctuations collected in the field and in the laboratory, and (ii) temperature, salinity and in vivo fluorescence (a proxy of phytoplankton biomass, i.e. unicelled vegetals passively advected by turbulence) sampled from highly turbulent coastal waters. The strength...

Modeling Non-Stationary Processes of Diffusion of Solute Substances in the Near-Bottom Layer ofWater Reservoirs: Variation of the Direction of Flows and Assessment of Admissible Biogenic Load

V. V. Kozlov (2009)

Mathematical Modelling of Natural Phenomena

The paper is devoted to mathematical modelling and numerical computations of a nonstationary free boundary problem. The model is based on processes of molecular diffusion of some products of chemical decomposition of a solid organic substance concentrated in bottom sediments. It takes into account non-stationary multi-component and multi-stage chemical decomposition of organic substances and the processes of sorption desorption under aerobic and anaerobic conditions. Such a model allows one to...

Modeling the role of constant and time varying recycling delay on an ecological food chain

Banibrata Mukhopadhyay, Rakhi Bhattacharyya (2010)

Applications of Mathematics

We consider a mathematical model of nutrient-autotroph-herbivore interaction with nutrient recycling from both autotroph and herbivore. Local and global stability criteria of the model are studied in terms of system parameters. Next we incorporate the time required for recycling of nutrient from herbivore as a constant discrete time delay. The resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we assume the recycling delay in the oscillatory form to model the...

Currently displaying 61 – 80 of 159