Displaying 341 – 360 of 791

Showing per page

Global exponential stability of almost periodic solutions for a delayed single population model with hereditary effect

Qiyuan Zhou, Jianying Shao (2015)

Annales Polonici Mathematici

This paper is concerned with a delayed single population model with hereditary effect. Under appropriate conditions, we employ a novel argument to establish a criterion of the global exponential stability of positive almost periodic solutions of the model. Moreover, an example and its numerical simulation are given to illustrate the main result.

Global exponential stability of positive periodic solutions for an epidemic model with saturated treatment

Bingwen Liu (2016)

Annales Polonici Mathematici

This paper is concerned with an SIR model with periodic incidence rate and saturated treatment function. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability of positive periodic solutions for this model. The result obtained improves and supplements existing ones. We also use numerical simulations to illustrate our theoretical results.

Global stability analysis and control of leptospirosis

Kazeem Oare Okosun, M. Mukamuri, Daniel Oluwole Makinde (2016)

Open Mathematics

The aim of this paper is to investigate the effectiveness and cost-effectiveness of leptospirosis control measures, preventive vaccination and treatment of infective humans that may curtail the disease transmission. For this, a mathematical model for the transmission dynamics of the disease that includes preventive, vaccination, treatment of infective vectors and humans control measures are considered. Firstly, the constant control parameters’ case is analyzed, also calculate the basic reproduction...

Global stability of steady solutions for a model in virus dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Global Stability of Steady Solutions for a Model in Virus Dynamics

Hermano Frid, Pierre-Emmanuel Jabin, Benoît Perthame (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence – a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical...

Growth of heterotrophe and autotrophe populations in an isolated terrestrial environment

Piotr Paweł Szopa, Monika Joanna Piotrowska (2011)

Applicationes Mathematicae

We consider the model, proposed by Dawidowicz and Zalasiński, describing the interactions between the heterotrophic and autotrophic organisms coexisting in a terrestrial environment with available oxygen. We modify this model by assuming intraspecific competition between heterotrophic organisms. Moreover, we introduce a diffusion of both types of organisms and oxygen. The basic properties of the extended model are examined and illustrated by numerical simulations.

Herbivore harvesting and alternative steady states in coral reefs

Ikbal Hossein Sarkar, Joydeb Bhattacharyya, Samares Pal (2021)

Applications of Mathematics

Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Degradation of coral reefs is often associated with changes in community structure towards a macroalgae-dominated reef ecosystem due to the reduction in herbivory caused by overfishing. We investigate the coral-macroalgal phase shift due to the effects of harvesting of herbivorous reef fish by means of a continuous time model in the food chain. Conditions for local asymptotic stability...

Homoclinic orbits in a two-patch predator-prey model with Preisach hysteresis operator

Alexander Pimenov, Dmitrii Rachinskii (2014)

Mathematica Bohemica

Systems of operator-differential equations with hysteresis operators can have unstable equilibrium points with an open basin of attraction. Such equilibria can have homoclinic orbits attached to them, and these orbits are robust. In this paper a population dynamics model with hysteretic response of the prey to variations of the predator is introduced. In this model the prey moves between two patches, and the derivative of the Preisach operator is used to describe the hysteretic flow between the...

Homogeneous Systems with a Quiescent Phase

K. P. Hadeler (2008)

Mathematical Modelling of Natural Phenomena

Recently the effect of a quiescent phase (or dormant/resting phase in applications) on the dynamics of a system of differential equations has been investigated, in particular with respect to stability properties of stationary points. It has been shown that there is a general phenomenon of stabilization against oscillations which can be cast in rigorous form. Here we investigate, for homogeneous systems, the effect of a quiescent phase, and more generally, a phase with slower dynamics. We show that...

Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel

M. Neamţu, L. Buliga, F. R. Horhat, D. Opriş (2010)

Mathematical Modelling of Natural Phenomena

The aim of this paper is to study the steady states of the mathematical models with delay kernels which describe pathogen-immune dynamics of infectious diseases. In the study of mathematical models of infectious diseases it is important to predict whether the infection disappears or the pathogens persist. The delay kernel is described by the memory function that reflects the influence of the past density of pathogen in the blood and it is given by a nonnegative bounded and normated function k defined...

Currently displaying 341 – 360 of 791