Displaying 81 – 100 of 569

Showing per page

A genetic algorithm for the multistage control of a fuzzy system in a fuzzy environment.

Janusz Kacprzyk (1997)

Mathware and Soft Computing

We discuss a prescriptive approach to multistage optimal fuzzy control of a fuzzy system, given by a fuzzy state transition equation. Fuzzy constraints and fuzzy goals at consecutive control stages are given, and their confluence, Bellman and Zadeh's fuzzy decision, is an explicit performance function to be optimized. First, we briefly survey previous basic solution methods of dynamic programming (Baldwin and Pilsworth, 1982) and branch-and-bound (Kacprzyk, 1979), which are plagued by low numerical...

A geometric algorithm for the output functional controllability in general manipulation systems and mechanisms

Paolo Mercorelli (2012)

Kybernetika

In this paper the control of robotic manipulation is investigated. Manipulation system analysis and control are approached in a general framework. The geometric aspect of manipulation system dynamics is strongly emphasized by using the well developed techniques of geometric multivariable control theory. The focus is on the (functional) control of the crucial outputs in robotic manipulation, namely the reachable internal forces and the rigid-body object motions. A geometric control procedure is outlined...

A geometric procedure for robust decoupling control of contact forces in robotic manipulation

Paolo Mercorelli, Domenico Prattichizzo (2003)

Kybernetika

This paper deals with the problem of controlling contact forces in robotic manipulators with general kinematics. The main focus is on control of grasping contact forces exerted on the manipulated object. A visco-elastic model for contacts is adopted. The robustness of the decoupling controller with respect to the uncertainties affecting system parameters is investigated. Sufficient conditions for the invariance of decoupling action under perturbations on the contact stiffness and damping parameters...

A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems

Eduardo Aranda-Bricaire, Ülle Kotta (2004)

Kybernetika

The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.

A Hamiltonian approach to fault isolation in a planar vertical take-off and landing aircraft model

Luis H. Rodriguez-Alfaro, Efrain Alcorta-Garcia, David Lara, Gerardo Romero (2015)

International Journal of Applied Mathematics and Computer Science

The problem of fault detection and isolation in a class of nonlinear systems having a Hamiltonian representation is considered. In particular, a model of a planar vertical take-off and landing aircraft with sensor and actuator faults is studied. A Hamiltonian representation is derived from an Euler-Lagrange representation of the system model considered. In this form, nonlinear decoupling is applied in order to obtain subsystems with (as much as possible) specific fault sensitivity properties. The...

A hierarchical decomposition of decision process Petri nets for modeling complex systems

Julio Clempner (2010)

International Journal of Applied Mathematics and Computer Science

We provide a framework for hierarchical specification called Hierarchical Decision Process Petri Nets (HDPPNs). It is an extension of Decision Process Petri Nets (DPPNs) including a hierarchical decomposition process that generates less complex nets with equivalent behavior. As a result, the complexity of the analysis for a sophisticated system is drastically reduced. In the HDPPN, we represent the mark-dynamic and trajectory-dynamic properties of a DPPN. Within the framework of the mark-dynamic...

A homotopy approach to rational covariance extension with degree constraint

Per Enqvist (2001)

International Journal of Applied Mathematics and Computer Science

The solutions to the Rational Covariance Extension Problem (RCEP) are parameterized by the spectral zeros. The rational filter with a specified numerator solving the RCEP can be determined from a known convex optimization problem. However, this optimization problem may become ill-conditioned for some parameter values. A modification of the optimization problem to avoid the ill-conditioning is proposed and the modified problem is solved efficiently by a continuation method.

A hybrid procedure to identify the optimal stiffness coefficients of elastically restrained beams

Tiago Silva, Maria Loja, Nuno Maia, Joaquim Barbosa (2015)

International Journal of Applied Mathematics and Computer Science

The formulation of a bending vibration problem of an elastically restrained Bernoulli-Euler beam carrying a finite number of concentrated elements along its length is presented. In this study, the authors exploit the application of the differential evolution optimization technique to identify the torsional stiffness properties of the elastic supports of a Bernoulli-Euler beam. This hybrid strategy allows the determination of the natural frequencies and mode shapes of continuous beams, taking into...

A learning paradigm for motion control of mobile manipulators

Foudil Abdessemed, Eric Monacelli, Khier Benmahammed (2006)

International Journal of Applied Mathematics and Computer Science

Motion control of a mobile manipulator is discussed. The objective is to allow the end-effector to track a given trajectory in a fixed world frame. The motion of the platform and that of the manipulator are coordinated by a neural network which is a kind of graph designed from the kinematic model of the system. A learning paradigm is used to produce the required reference variables for each of the mobile platform and the robot manipulator for an overall coordinate behavior. Simulation results are...

A level set method in shape and topology optimization for variational inequalities

Piotr Fulmański, Antoine Laurain, Jean-Francois Scheid, Jan Sokołowski (2007)

International Journal of Applied Mathematics and Computer Science

The level set method is used for shape optimization of the energy functional for the Signorini problem. The boundary variations technique is used in order to derive the shape gradients of the energy functional. The conical differentiability of solutions with respect to the boundary variations is exploited. The topology modifications during the optimization process are identified by means of an asymptotic analysis. The topological derivatives of the energy shape functional are employed for the topology...

A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators

Qi Lü (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, a lower bound is established for the local energy of partial sum of eigenfunctions for Laplace-Beltrami operators (in Riemannian manifolds with low regularity data) with general boundary condition. This result is a consequence of a new pointwise and weighted estimate for Laplace-Beltrami operators, a construction of some nonnegative function with arbitrary given critical point location in the manifold, and also two interpolation results for solutions of elliptic equations with lateral...

A Lyapunov functional for a system with a time-varying delay

Józef Duda (2012)

International Journal of Applied Mathematics and Computer Science

The paper presents a method to determine a Lyapunov functional for a linear time-invariant system with an interval timevarying delay. The functional is constructed for the system with a time-varying delay with a given time derivative, which is calculated on the system trajectory. The presented method gives analytical formulas for the coefficients of the Lyapunov functional.

A Lyapunov-based design tool of impedance controllers for robot manipulators

Marco Mendoza, Isela Bonilla, Fernando Reyes, Emilio González-Galván (2012)

Kybernetika

This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control,...

Currently displaying 81 – 100 of 569