Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density
In this paper we prove a unique continuation result for a cascade system of parabolic equations, in which the solution of the first equation is (partially) used as a forcing term for the second equation. As a consequence we prove the existence of ε-insensitizing controls for some parabolic equations when the control region and the observability region do not intersect.
We study a non standard unique continuation property for the biharmonic spectral problem in a 2D corner with homogeneous Dirichlet boundary conditions and a supplementary third order boundary condition on one side of the corner. We prove that if the corner has an angle , and , a unique continuation property holds. Approximate controllability of a 2-D linear fluid-structure problem follows from this property, with a control acting on the elastic side of a corner in a domain containing a Stokes...
We study a non standard unique continuation property for the biharmonic spectral problem in a 2D corner with homogeneous Dirichlet boundary conditions and a supplementary third order boundary condition on one side of the corner. We prove that if the corner has an angle , and , a unique continuation property holds. Approximate controllability of a 2-D linear fluid-structure problem follows from this property, with a control acting on the elastic side of a corner in a domain containing...
The goal of this article is the study of the approximate controllability for two approximations of Navier Stokes equations with distributed controls. The method of proof combines a suitable linearization of the system with a fixed point argument. We then are led to study the approximate controllability of linear Stokes systems with potentials. We study both the case where there is no constraint on the control and the case where we search a control having one null component. In both cases,...
This paper presents the variational approach to some optimization problems: Mayer's problem with or without constraints on the final point, local controllability of a trajectory, time-optimal problems.
We survey the literature on well-posed linear systems, which has been an area of rapid development in recent years. We examine the particular subclass of conservative systems and its connections to scattering theory. We study some transformations of well-posed systems, namely duality and time-flow inversion, and their effect on the transfer function and the generating operators. We describe a simple way to generate conservative systems via a second-order differential equation in a Hilbert space....