Page 1 Next

Displaying 1 – 20 of 71

Showing per page

Observability inequalities and measurable sets

Jone Apraiz, Luis Escauriaza, Gengsheng Wang, C. Zhang (2014)

Journal of the European Mathematical Society

This paper presents two observability inequalities for the heat equation over Ω × ( 0 , T ) . In the first one, the observation is from a subset of positive measure in Ω × ( 0 , T ) , while in the second, the observation is from a subset of positive surface measure on Ω × ( 0 , T ) . It also proves the Lebeau-Robbiano spectral inequality when Ω is a bounded Lipschitz and locally star-shaped domain. Some applications for the above-mentioned observability inequalities are provided.

Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes

Sylvain Ervedoza (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The goal of this article is to analyze the observability properties for a space semi-discrete approximation scheme derived from a mixed finite element method of the 1d wave equation on nonuniform meshes. More precisely, we prove that observability properties hold uniformly with respect to the mesh-size under some assumptions, which, roughly, measures the lack of uniformity of the meshes, thus extending the work [Castro and Micu, Numer. Math.102 (2006) 413–462] to nonuniform meshes. Our results...

On a class of linear delay systems often arising in practice

Michel Fliess, Hugues Mounier (2001)

Kybernetika

We study the tracking control of linear delay systems. It is based on an algebraic property named π -freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.

On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays

Beata Sikora (2019)

Kybernetika

The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function f . The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time t > 0 is presented. A numerical...

On asymptotic exit-time control problems lacking coercivity

M. Motta, C. Sartori (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The research on a class of asymptotic exit-time problems with a vanishing Lagrangian, begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact control case, is extended here to the case of unbounded controls and data, including both coercive and non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control problem and obtain regularity, characterization and approximation results for the value function of the problem....

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations∗∗∗

Jérôme Le Rousseau, Gilles Lebeau (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Local and global Carleman estimates play a central role in the study of some partial differential equations regarding questions such as unique continuation and controllability. We survey and prove such estimates in the case of elliptic and parabolic operators by means of semi-classical microlocal techniques. Optimality results for these estimates and some of their consequences are presented. We point out the connexion of these optimality results to the local phase-space geometry after conjugation...

On constrained controllability of dynamical systems with multiple delays in control

Beata Sikora (2005)

Applicationes Mathematicae

Linear, continuous dynamical systems with multiple delays in control are studied. Their relative and absolute controllability with constrained control is discussed. Definitions of various types of constrained relative and absolute controllability for linear systems with delays in control are introduced. Criteria of relative and absolute controllability with constrained control are established. Constraints on control values are considered. Mutual implications between constrained relative controllability...

On exact controllability for the Navier-Stokes equations

O. Yu. Imanuvilov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain with control distributed in an arbitrary fixed subdomain. The result that we obtain in this paper is as follows. Suppose that we have a given stationary point of the Navier-Stokes equations and our initial condition is sufficiently close to it. Then there exists a locally distributed control such that in a given moment of time the solution of the Navier-Stokes...

On exact null controllability of Black-Scholes equation

Kumarasamy Sakthivel, Krishnan Balachandran, Rangarajan Sowrirajan, Jeong-Hoon Kim (2008)

Kybernetika

In this paper we discuss the exact null controllability of linear as well as nonlinear Black–Scholes equation when both the stock volatility and risk-free interest rate influence the stock price but they are not known with certainty while the control is distributed over a subdomain. The proof of the linear problem relies on a Carleman estimate and observability inequality for its own dual problem and that of the nonlinear one relies on the infinite dimensional Kakutani fixed point theorem with L 2 ...

On global controllability of linear time dependent control systems

Alberto Tonolo (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let A , B be a linear time dependent control process, defined on an open interval J = ] a , ω [ with a - and ω ; in this paper we give a description of the function τ : I J , τ ( t ) = inf { t > t : ( A , B ) is t , t -globally controllable from 0 } where I = { t J : t J with A , B t , t -globally controllable from 0 } .

Currently displaying 1 – 20 of 71

Page 1 Next