Schrödinger equations in noncylindrical domains: exact controllability.
By means of a result on the semi-global C1 solution, we establish the exact boundary controllability for the reducible quasilinear hyperbolic system if the C1 norm of initial data and final state is small enough.
We consider mixed problems for Kirchhoff elastic and thermoelastic systems, subject to boundary control in the clamped Boundary Conditions B.C. (“clamped control”). If w denotes elastic displacement and θ temperature, we establish optimal regularity of {w, w_t, w_tt} in the elastic case, and of {w, w_t, w_tt, θ} in the thermoelastic case. Our results complement those presented in (Lagnese and Lions, 1988), where sharp (optimal) trace regularity results are obtained for the corresponding boundary...
We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.
We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.
In this paper we study a controllability problem for a simplified one dimensional model for the motion of a rigid body in a viscous fluid. The control variable is the velocity of the fluid at one end. One of the novelties brought in with respect to the existing literature consists in the fact that we use a single scalar control. Moreover, we introduce a new methodology, which can be used for other nonlinear parabolic systems, independently of the techniques previously used for the linearized problem....
The goal of this note is to present the recent results concerning the controllability of the Vlasov-Maxwell system, which are proved in the paper [10] by Olivier Glass and the author.
The study of controlled infinite-dimensional systems gives rise to many papers (see for instance [GXL], [GXB], [X]) but it is also motivated by various mathematical problems: partial differential equations ([BP]), sub-Riemannian geometry on infinite-dimensional manifolds ([Gr]), deformations in loop-spaces ([AP], [PS]). The first difference between finite and infinite-dimensional cases is that solutions in general do not exist (even locally) for every given control function. The aim of this paper...
This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.
This paper investigates the output controllability problem of temporal Boolean networks with inputs (control nodes) and outputs (controlled nodes). A temporal Boolean network is a logical dynamic system describing cellular networks with time delays. Using semi-tensor product of matrices, the temporal Boolean networks can be converted into discrete time linear dynamic systems. Some necessary and sufficient conditions on the output controllability via two kinds of inputs are obtained by providing...
We address three null controllability problems related to the heat equation. First we show that the heat equation with a rapidly oscillating density is uniformly null controllable as the period of the density tends to zero. We also prove that the same result holds for the finite-difference semi-discretization in space of the constant coefficient heat equation as the step size tends to zero. Finally, we prove that the null controllability of the constant coefficient heat equation can be obtained...