Previous Page 3

Displaying 41 – 60 of 60

Showing per page

Positive stable realizations of fractional continuous-time linear systems

Tadeusz Kaczorek (2011)

International Journal of Applied Mathematics and Computer Science

Conditions for the existence of positive stable realizations with system Metzler matrices for fractional continuous-time linear systems are established. A procedure based on the Gilbert method for computation of positive stable realizations of proper transfer matrices is proposed. It is shown that linear minimum-phase systems with real negative poles and zeros always have positive stable realizations.

Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra

Jiangfeng Zhang, Claude H. Moog, Xiao Hua Xia (2010)

Kybernetika

In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.

Realization problem for a class of positive continuous-time systems with delays

Tadeusz Kaczorek (2005)

International Journal of Applied Mathematics and Computer Science

The realization problem for a class of positive, continuous-time linear SISO systems with one delay is formulated and solved. Sufficient conditions for the existence of positive realizations of a given proper transfer function are established. A procedure for the computation of positive minimal realizations is presented and illustrated by an example.

Realization theory for linear and bilinear switched systems: A formal power series approach

Mihály Petreczky (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The paper represents the first part of a series of papers on realization theory of switched systems. Part I presents realization theory of linear switched systems, Part II presents realization theory of bilinear switched systems. More precisely, in Part I necessary and sufficient conditions are formulated for a family of input-output maps to be realizable by a linear switched system and a characterization of minimal realizations is presented. The paper treats two types of switched systems. The...

Realization theory for linear and bilinear switched systems: A formal power series approach

Mihály Petreczky (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is the second part of a series of papers dealing with realization theory of switched systems. The current Part II addresses realization theory of bilinear switched systems. In Part I [Petreczky, ESAIM: COCV, DOI: 10.1051/cocv/2010014] we presented realization theory of linear switched systems. More precisely, in Part II we present necessary and sufficient conditions for a family of input-output maps to be realizable by a bilinear switched system, together with a characterization of minimal...

Realization theory for linear and bilinear switched systems: A formal power series approach

Mihály Petreczky (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is the second part of a series of papers dealing with realization theory of switched systems. The current Part II addresses realization theory of bilinear switched systems. In Part I [Petreczky, ESAIM: COCV, DOI: 10.1051/cocv/2010014] we presented realization theory of linear switched systems. More precisely, in Part II we present necessary and sufficient conditions for a family of input-output maps to be realizable by a bilinear switched system, together with a characterization of minimal...

Realization theory for linear and bilinear switched systems: A formal power series approach

Mihály Petreczky (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The paper represents the first part of a series of papers on realization theory of switched systems. Part I presents realization theory of linear switched systems, Part II presents realization theory of bilinear switched systems. More precisely, in Part I necessary and sufficient conditions are formulated for a family of input-output maps to be realizable by a linear switched system and a characterization of minimal realizations is presented. The paper treats two types of switched systems. The...

Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems

Volker Reitmann (2011)

Mathematica Bohemica

Realization theory for linear input-output operators and frequency-domain methods for the solvability of Riccati operator equations are used for the stability and instability investigation of a class of nonlinear Volterra integral equations in a Hilbert space. The key idea is to consider, similar to the Volterra equation, a time-invariant control system generated by an abstract ODE in a weighted Sobolev space, which has the same stability properties as the Volterra equation.

State-space realization of nonlinear control systems: unification and extension via pseudo-linear algebra

Juri Belikov, Ülle Kotta, Maris Tõnso (2012)

Kybernetika

In this paper the tools of pseudo-linear algebra are applied to the realization problem, allowing to unify the study of the continuous- and discrete-time nonlinear control systems under a single algebraic framework. The realization of nonlinear input-output equation, defined in terms of the pseudo-linear operator, in the classical state-space form is addressed by the polynomial approach in which the system is described by two polynomials from the non-commutative ring of skew polynomials. This allows...

Szegő's first limit theorem in terms of a realization of a continuous-time time-varying systems

Pablo Iglesias, Guoqiang Zang (2001)

International Journal of Applied Mathematics and Computer Science

It is shown that the limit in an abstract version of Szegő's limit theorem can be expressed in terms of the antistable dynamics of the system. When the system dynamics are regular, it is shown that the limit equals the difference between the antistable Lyapunov exponents of the system and those of its inverse. In the general case, the elements of the dichotomy spectrum give lower and upper bounds.

The geometry of Darlington synthesis (in memory of W. Cauer)

Patrick Dewilde (2001)

International Journal of Applied Mathematics and Computer Science

We revisit the classical problem of 'Darlington synthesis', or Darlington embedding. Although traditionally it is solved using analytic means, a more natural way to approach it is to use the geometric properties of a well-chosen Hankel map. The method yields surprising results. In the first place, it allows us to formulate necessary and sufficient conditions for the existence of the embedding in terms of systems properties of the transfer operation to be embedded. In addition, the approach allows...

Weak and exact domination in distributed systems

Larbi Afifi, El Mostafa Magri, Abdelhaq El Jai (2010)

International Journal of Applied Mathematics and Computer Science

In this work, we introduce and examine the notion of domination for a class of linear distributed systems. This consists in studying the possibility to make a comparison between input or output operators. We give the main algebraic properties of such relations, as well as characterizations of exact and weak domination. We also study the case of actuators, and various situations are examined. Applications and illustrative examples are also given. By duality, we extend this study to observed systems....

Currently displaying 41 – 60 of 60

Previous Page 3