The selection of input and output schemes for a system and the model projection problems
Necessary and sufficient conditions are given for the existence of state and output transformations, that bring single-input single-output nonlinear state equations into the observer form. The conditions are formulated in terms of differential one-forms, associated with an input-output equation of the system. An algorithm for transformation of the state equations into the observer form is presented and illustrated by an example.
We show how we can transform the and control problems of descriptor systems with invariant zeros on the extended imaginary into problems with state-space systems without such zeros. Then we present necessary and sufficient conditions for existence of solutions of the original problems. Numerical algorithm for control is given, based on the Nevanlinna-Pick theorem. Also, we present an explicit formula for the optimal controller.