Displaying 41 – 60 of 71

Showing per page

Meromorphic observer-based pole assignment in time delay systems

Pavel Zítek, Vladimír Kučera, Tomáš Vyhlídal (2008)

Kybernetika

The paper deals with a novel method of control system design which applies meromorphic transfer functions as models for retarded linear time delay systems. After introducing an auxiliary state model a finite-spectrum observer is designed to close a stabilizing state feedback. The observer finite spectrum is the key to implement a state feedback stabilization scheme and to apply the affine parametrization in controller design. On the basis of the so- called RQ-meromorphic functions an algebraic solution...

Optimization and pole assignment in control system design

Eric Chu (2001)

International Journal of Applied Mathematics and Computer Science

Some elementary optimization techniques, together with some not so well-known robustness measures and condition numbers, will be utilized in pole assignment. In particular, ''Method 0'' by Kautsky et al. (1985) for optimal selection of vectors is shown to be convergent to a local minimum, with respect to the condition number . This contrasts with the misconception by Kautsky et al. that the method diverges, or the recent discovery by Yang and Tits (1995) that the method converges to stationary points....

Poles and zeroes of nonlinear control systems

Jean-François Pommaret (2002)

Kybernetika

During the last ten years, the concepts of “poles” and “zeros” for linear control systems have been revisited by using modern commutative algebra and module theory as a powerful substitute for the theory of polynomial matrices. Very recently, these concepts have been extended to multidimensional linear control systems with constant coefficients. Our purpose is to use the methods of “algebraic analysis” in order to extend these concepts to the variable coefficients case and, as a byproduct, to the...

Polynomial controller design based on flatness

Frédéric Rotella, Francisco Javier Carillo, Mounir Ayadi (2002)

Kybernetika

By the use of flatness the problem of pole placement, which consists in imposing closed loop system dynamics can be related to tracking. Polynomial controllers for finite-dimensional linear systems can then be designed with very natural choices for high level parameters design. This design leads to a Bezout equation which is independent of the closed loop dynamics but depends only on the system model.

Robust PI-D controller design for descriptor systems using regional pole placement and/or H 2 performance

Vojtech Veselý, Ladislav Körösi (2020)

Kybernetika

The paper deals with the problem of obtaining a robust PI-D controller design procedure for linear time invariant descriptor uncertain polytopic systems using the regional pole placement and/or H 2 criterion approach in the form of a quadratic cost function with the state, derivative state and plant input (QSR). In the frame of Lyapunov Linear Matrix Inequality (LMI) regional pole placement approach and/or H 2 quadratic cost function based on Bellman-Lyapunov equation, the designed novel design procedure...

Robust pole placement for second-order systems: an LMI approach

Didier Henrion, Michael Šebek, Vladimír Kučera (2005)

Kybernetika

Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.

Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults

Damiano Rotondo, Fatiha Nejjari, Vicenç Puig (2015)

International Journal of Applied Mathematics and Computer Science

A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being...

Currently displaying 41 – 60 of 71