Previous Page 7

Displaying 121 – 127 of 127

Showing per page

Rotary inverted pendulum: trajectory tracking via nonlinear control techniques

Luis E. Ramos-Velasco, Javier Ruiz, Sergej Čelikovský (2002)

Kybernetika

The nonlinear control techniques are applied to the model of rotary inverted pendulum. The model has two degrees of freedom and is not exactly linearizable. The goal is to control output trajectory of the rotary inverted pendulum asymptotically along a desired reference. Moreover, the designed controller should be robust with respect to specified perturbations and parameters uncertainties. A combination of techniques based on nonlinear normal forms, output regulation and sliding mode approach is...

Routh-type L 2 model reduction revisited

Wiesław Krajewski, Umberto Viaro (2018)

Kybernetika

A computationally simple method for generating reduced-order models that minimise the L 2 norm of the approximation error while preserving a number of second-order information indices as well as the steady-state value of the step response, is presented. The method exploits the energy-conservation property peculiar to the Routh reduction method and the interpolation property of the L 2 -optimal approximation. Two examples taken from the relevant literature show that the suggested techniques may lead to...

RTC-method for the control of nuclear reactor power

Wajdi A. Ratemi (1998)

Kybernetika

In this paper, a new concept of the Reactivity Trace Curve (RTC) for reactor power control is presented. The concept is demonstrated for a reactor model with one group of delayed neutrons, where the reactivity trace curve is simply a closed form exponential solution of the RTC-differential equation identifier. An extended reactor model of multigroup (six groups) of delayed neutrons is discussed for power control using the RTC-method which is based on numerical solution of the governing equation...

Currently displaying 121 – 127 of 127

Previous Page 7