Page 1 Next

Displaying 1 – 20 of 192

Showing per page

Canonical forms of singular 1D and 2D linear systems

Tadeusz Kaczorek (2003)

International Journal of Applied Mathematics and Computer Science

The paper consists of two parts. In the first part, new canonical forms are defined for singular 1D linear systems and a procedure to determine nonsingular matrices transforming matrices of singular systems to their canonical forms is derived. In the second part new canonical forms of matrices of the singular 2D Roesser model are defined and a procedure for determining realisations in canonical forms for a given 2D transfer function is presented. Necessary and sufficient conditions for the existence...

Canonical input-output representation of linear multivariable stochastic systems and joint optimal parameter and state estimation.

G. Salut, J. Aguilar-Martín, S. Lefevre (1979)

Stochastica

In this paper a complete presentation is given of a new canonical representation of multi-input, multi-output linear stochastic systems. Its equivalence with operator form directly linked with ARMA processes as well as with classical state space representation is given, and a transfer matrix interpretation is developed in an example. The importance of the new representation is mainly in the fact that in the joint state and parameters estimation problem, all unknown parameters appear linearly when...

Characterization of generic properties of linear structured systems for efficient computations

Christian Commault, Jean-Michel Dion, Jacob W. van der Woude (2002)

Kybernetika

In this paper we investigate some of the computational aspects of generic properties of linear structured systems. In such systems only the zero/nonzero pattern of the system matrices is assumed to be known. For structured systems a number of characterizations of so-called generic properties have been obtained in the literature. The characterizations often have been presented by means of the graph associated to a linear structured system and are then expressed in terms of the maximal or minimal...

Clocks and Insensitivity to Small Measurement Errors

Eduardo D. Sontag (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with the problem of stabilizing a system in the presence of small measurement errors. It is known that, for general stabilizable systems, there may be no possible memoryless state feedback which is robust with respect to such errors. In contrast, a precise result is given here, showing that, if a (continuous-time, finite-dimensional) system is stabilizable in any way whatsoever (even by means of a dynamic, time varying, discontinuous, feedback) then it can also be semiglobally...

Closed-loop structure of decouplable linear multivariable systems

Javier Ruiz, Jorge Luis Orozco, Ofelia Begovich (2005)

Kybernetika

Considering a controllable, square, linear multivariable system, which is decouplable by static state feedback, we completely characterize in this paper the structure of the decoupled closed-loop system. The family of all attainable transfer function matrices for the decoupled closed-loop system is characterized, which also completely establishes all possible combinations of attainable finite pole and zero structures. The set of assignable poles as well as the set of fixed decoupling poles are determined,...

Comparison of linear control methods for an AMB system

Wojciech Grega, Adam Pilat (2005)

International Journal of Applied Mathematics and Computer Science

The contactless nature of active magnetic bearings brings about many advantages over the conventional bearing while industrial real-time applications are often limited by the significant complexity of control algorithms. This paper presents the application of an LQ controller to an active magnetic bearing system (AMB). Two control strategies are presented and compared: local and global. In the first case the rotor is modelled as two separated masses located at the bearing. In the second case rotor...

Comparison of the stability boundary and the frequency response stability condition in learning and repetitive control

Szathys Songschon, Richard Longman (2003)

International Journal of Applied Mathematics and Computer Science

In iterative learning control (ILC) and in repetitive control (RC) one is interested in convergence to zero tracking error as the repetitions of the command or the periods in the command progress. A condition based on steady state frequency response modeling is often used, but it does not represent the true stability boundary for convergence. In this paper we show how this useful condition differs from the true stability boundary in ILC and RC, and show that in applications of RC the distinction...

Complementary matrices in the inclusion principle for dynamic controllers

Lubomír Bakule, José Rodellar, Josep M. Rossell (2003)

Kybernetika

A generalized structure of complementary matrices involved in the input-state- output Inclusion Principle for linear time-invariant systems (LTI) including contractibility conditions for static state feedback controllers is well known. In this paper, it is shown how to further extend this structure in a systematic way when considering contractibility of dynamic controllers. Necessary and sufficient conditions for contractibility are proved in terms of both unstructured and block structured complementary...

Complex calculus of variations

Michel Gondran, Rita Hoblos Saade (2003)

Kybernetika

In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to 𝐂 n functions in 𝐂 . It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions...

Currently displaying 1 – 20 of 192

Page 1 Next