Page 1 Next

Displaying 1 – 20 of 79

Showing per page

Data-driven models for fault detection using kernel PCA: A water distribution system case study

Adam Nowicki, Michał Grochowski, Kazimierz Duzinkiewicz (2012)

International Journal of Applied Mathematics and Computer Science

Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system's framework is followed by...

Deadbeat control, pole placement, and LQ regulation

Vladimír Kučera (1999)

Kybernetika

Deadbeat control, a typical example of linear control strategies in discrete- time systems, is shown to be a special case of the linear-quadratic regulation. This result is obtained by drawing on the parallels between the state-space and the transfer-function design techniques.

Decentralized control for large-scale systems with time-varying delay and unmatched uncertainties

Wen-Jeng Liu (2011)

Kybernetika

Many real-world systems contain uncertainties and with time-varying delays, also, they have become larger and more complicated. Hence, a new decentralized variable structure control law is proposed for a class of uncertain large-scale system with time varying delay in the interconnection and time varying unmatched uncertainties in the state matrix. The proposed decentralized control law for the large-scale time-varying delay system is realized independently through the delayed terms and it can drive...

Decentralized control of interconnected linear systems with delayed states

Carlos E. de Souza (2001)

Kybernetika

This paper addresses the problems of stability analysis and decentralized control of interconnected linear systems with constant time-delays in the state of each subsystems as well as in the interconnections. We develop delay- dependent methods of stability analysis and decentralized stabilization via linear memoryless state-feedback. The proposed methods are given in terms of linear matrix inequalities. Extensions of the decentralized stabilization result to more complex control problems, such...

Decentralized design of interconnected H feedback control systems with quantized signals

Guisheng Zhai, Ning Chen, Weihua Gui (2013)

International Journal of Applied Mathematics and Computer Science

In this paper, we consider the design of interconnected H feedback control systems with quantized signals. We assume that a decentralized dynamic output feedback has been designed for an interconnected continuous-time LTI system so that the closed-loop system is stable and a desired H disturbance attenuation level is achieved, and that the subsystem measurement outputs are quantized before they are passed to the local controllers. We propose a local-output-dependent strategy for updating the parameters...

Decentralized robust tracking control of uncertain large scale systems with multiple delays in the interconnections

Hansheng Wu (2009)

Kybernetika

The problem of the decentralized robust tracking and model following is considered for a class of uncertain large scale systems including time-varying delays in the interconnections. On the basis of the Razumikhin-type theorem and the Lyapunov stability theory, a class of decentralized memoryless local state feedback controllers is proposed for robust tracking of dynamical signals. It is shown that by employing the proposed decentralized robust tracking controllers, one can guarantee that the tracking...

Decomposition of a second-order linear time-varying differential system as the series connection of two first order commutative pairs

Mehmet Emir Koksal (2016)

Open Mathematics

Necessary and sufficiently conditions are derived for the decomposition of a second order linear time- varying system into two cascade connected commutative first order linear time-varying subsystems. The explicit formulas describing these subsystems are presented. It is shown that a very small class of systems satisfies the stated conditions. The results are well verified by simulations. It is also shown that its cascade synthesis is less sensitive to numerical errors than the direct simulation...

Decomposition of the symptom observation matrix and grey forecasting in vibration condition monitoring of machines

Czesław Cempel (2008)

International Journal of Applied Mathematics and Computer Science

With the tools of modern metrology we can measure almost all variables in the phenomenon field of a working machine, and many of the measured quantities can be symptoms of machine conditions. On this basis, we can form a symptom observation matrix (SOM) intended for condition monitoring and wear trend (fault) identification. On the other hand, we know that contemporary complex machines may have many modes of failure, called faults. The paper presents a method of the extraction of the information...

Decomposition of vibration signals into deterministic and nondeterministic components and its capabilities of fault detection and identification

Tomasz Barszcz (2009)

International Journal of Applied Mathematics and Computer Science

The paper investigates the possibility of decomposing vibration signals into deterministic and nondeterministic parts, based on the Wold theorem. A short description of the theory of adaptive filters is presented. When an adaptive filter uses the delayed version of the input signal as the reference signal, it is possible to divide the signal into a deterministic (gear and shaft related) part and a nondeterministic (noise and rolling bearings) part. The idea of the self-adaptive filter (in the literature...

Decoupling and pole assignment by constant output feedback

Konstadinos H. Kiritsis, Trifon G. Koussiouris (2002)

Kybernetika

In this paper a system-theoretic approach is used to solve the decoupling in combination with the arbitrary pole assignment problem by constant output feedback and a constant nonsingular input transformation. Explicit necessary and sufficient conditions are given and a procedure is described for the determination of the control law.

Delay-dependent asymptotic stabilitzation for uncertain time-delay systems with saturating actuators

Pin-Lin Liu (2005)

International Journal of Applied Mathematics and Computer Science

This paper concerns the issue of robust asymptotic stabilization for uncertain time-delay systems with saturating actuators. Delay-dependent criteria for robust stabilization via linear memoryless state feedback have been obtained. The resulting upper bound on the delay time is given in terms of the solution to a Riccati equation subject to model transformation. Finally, examples are presented to show the effectiveness of our result.

Currently displaying 1 – 20 of 79

Page 1 Next