Fail-bounded implementations of the numerical model predictive control algorithms
We prove that there exist infinitely may values of the real parameter α for which the exact value of the spectral subradius of the set of two matrices (one matrix with ones above and on the diagonal and zeros elsewhere, and one matrix with α below and on the diagonal and zeros elsewhere, both matrices having two rows and two columns) cannot be calculated in a finite number of steps. Our proof uses only elementary facts from the theory of formal languages and from linear algebra, but it is not constructive...
Principal component analysis (PCA) is a powerful fault detection and isolation method. However, the classical PCA, which is based on the estimation of the sample mean and covariance matrix of the data, is very sensitive to outliers in the training data set. Usually robust principal component analysis is applied to remove the effect of outliers on the PCA model. In this paper, a fast two-step algorithm is proposed. First, the objective was to find an accurate estimate of the covariance matrix of...
This paper reviews the use of set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC). Setmembership methods use a deterministic unknown-but-bounded description of noise and parametric uncertainty (interval models). These methods aims at checking the consistency between observed and predicted behaviour by using simple sets to approximate the exact set of possible behaviour (in the parameter or the state space). When an inconsistency is detected between the measured and predicted...
This paper presents an approach to fault tolerant control based on the sensor masking principle in the case of wireless networked control systems. With wireless transmission, packet losses act as sensor faults. In the presence of such faults, the faulty measurements corrupt directly the behaviour of closed-loop systems. Since the controller aims at cancelling the error between the measurement and its reference input, the real outputs will, in such a networked control system, deviate from the desired...
This paper deals with a Fault Tolerant Control (FTC) strategy for polytopic Linear Parameter Varying (LPV) systems. The main contribution consists in the design of a Static Output Feedback (SOF) dedicated to such systems in the presence of multiple actuator faults/failures. The controllers are synthesized through Linear Matrix Inequalities (LMIs) in both fault-free and faulty cases in order to preserve the system closed-loop stability. Hence, this paper provides a new sufficient (but not necessary)...
Fault tolerant control for uncertain systems with time varying state-delay is studied in this paper. Based on sliding mode controller design, a fault tolerant control method is proposed. By means of the feasibility of some linear matrix inequalities (LMIs), delay dependent sufficient condition is derived for the existence of a linear sliding surface which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface. A reaching motion controller, which can...
Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably...
In this paper, a Fault Tolerant Control (FTC) strategy for Linear Parameter Varying (LPV) systems that can be used in the case of actuator faults is proposed. The idea of this FTC method is to adapt the faulty plant instead of adapting the controller to the faulty plant. This approach can be seen as a kind of virtual actuator. An integrated FTC design procedure for the fault identification and fault-tolerant control schemes using LPV techniques is provided as well. Fault identification is based...
Combat planes are designed in a structured relaxed static stability to meet maneuver requirements. These planes are unstable in the longitudinal axis and require continuous active control systems with elevator control. Therefore, failures in the elevator can have vital consequences for flight safety. In this work, the performance of classical control approach against asymmetric elevator failures is investigated and it is shown that this approach is insufficient in the case of such a failure. Then,...
The European leader for satellite systems and at the forefront of orbital infrastructures, Thales Alenia Space, is a joint venture between Thales (67%) and Finmeccanica (33%) and forms with Telespazio a Space Alliance. Thales Alenia Space is a worldwide reference in telecoms, radar and optical Earth observation, defence and security, navigation and science. It has 11 industrial sites in 4 European countries (France, Italy, Spain and Belgium) with over 7200 employees worldwide. Satellite evolution...
This paper proposes a novel nonlinear control algorithm for idle-speed control of a gasoline engine. This controller is based on the feedback linearization approach and extends this technique to the special structure and specifications of the idle-speed problem. Special static precompensations and cascaded loops are used to achieve the desired bandwidth separation between the fast spark and slow air-bypass action. A key element is the inclusion of the (engine-speed dependent) induction to power...
We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...
We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...