The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1441 –
1460 of
1698
In this paper we are exploiting some similarities between Markov and Bellman processes and we introduce the main concepts of the paper: comparison of performance measures, and monotonicity of Bellman chains. These concepts are used to establish the main result of this paper dealing with comparison of Bellman chains.
This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.
This paper investigates the output controllability problem of temporal Boolean networks with inputs (control nodes) and outputs (controlled nodes). A temporal Boolean network is a logical dynamic system describing cellular networks with time delays. Using semi-tensor product of matrices, the temporal Boolean networks can be converted into discrete time linear dynamic systems. Some necessary and sufficient conditions on the output controllability via two kinds of inputs are obtained by providing...
We address three null controllability problems related to the heat equation. First we show that the heat equation with a rapidly oscillating density is uniformly null controllable as the period of the density tends to zero. We also prove that the same result holds for the finite-difference semi-discretization in space of the constant coefficient heat equation as the step size tends to zero. Finally, we prove that the null controllability of the constant coefficient heat equation can be obtained...
The matrix pencil completion problem introduced in [J. J. Loiseau, S. Mondié, I. Zaballa, and P. Zagalak: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998)] is reconsidered and the latest results achieved in that field are discussed.
The problem of model matching by state feedback is reconsidered and some of the latest results are discussed.
In this article, we compare different types of representations for series with coefficients in complete idempotent semirings. Each of these representations was introduced to solve a particular problem. We show how they are or are not included one in the other and we present a common generalization of them.
We discuss a control problem for the Lamé system which naturally leads to the following uniqueness problem: Given a bounded domain of , are there non-trivial solutions of the evolution Lamé system with homogeneous Dirichlet boundary conditions for which the first two components vanish? We show that such solutions do not exist when the domain is Lipschitz. However, in two space dimensions one can build easily polygonal domains in which there are eigenvibrations with the first component being identically...
In this paper we discuss two closely related problems arising in environmental monitoring. The first is the source localization problem linked to the question How can one find an unknown "contamination source"? The second is an associated sensor placement problem: Where should we place sensors that are capable of providing the necessary "adequate data" for that? Our approach is based on some concepts and ideas developed in mathematical control theory of partial differential equations.
Currently displaying 1441 –
1460 of
1698