Displaying 301 – 320 of 421

Showing per page

Reachability of cone fractional continuous-time linear systems

Tadeusz Kaczorek (2009)

International Journal of Applied Mathematics and Computer Science

A new class of cone fractional continuous-time linear systems is introduced. Necessary and sufficient conditions for a fractional linear system to be a cone fractional one are established. Sufficient conditions for the reachability of cone fractional systems are given. The discussion is illustrated with an example of linear cone fractional systems.

Realizability of precompensators in linear multivariable systems: A structural approach

Javier Ruiz, Eduardo Castañeda (2014)

Kybernetika

In this work, given a linear multivariable system, the problem of static state feedback realization of dynamic compensators is considered. Necessary and sufficient conditions for the existence of a static state feedback that realizes the dynamic compensator (square or full column rank compensator) are stated in structural terms, i. e., in terms of the zero-pole structure of the compensator, and the eigenvalues and the row image of the controllability matrix of the compensated system. Based on these...

Realization problem for positive multivariable discretetime linear systems with delays in the state vector and inputs

Tadeusz Kaczorek (2006)

International Journal of Applied Mathematics and Computer Science

The realization problem for positive multivariable discrete-time systems with delays in the state and inputs is formulated and solved. Conditions for its solvability and the existence of a minimal positive realization are established. A procedure for the computation of a positive realization of a proper rational matrix is presented and illustrated with examples.

Receding-horizon control of constrained uncertain linear systems with disturbances

Luigi Chisci, Paola Falugi, Giovanni Zappa (2002)

Kybernetika

The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest...

Reconfigurability analysis for reliable fault-tolerant control design

Ahmed Khelassi, Didier Theilliol, Philippe Weber (2011)

International Journal of Applied Mathematics and Computer Science

In this paper the integration of reliability evaluation in reconfigurability analysis of a fault-tolerant control system is considered. The aim of this work is to contribute to reliable fault-tolerant control design. The admissibility of control reconfigurability is analyzed with respect to reliability requirements. This analysis shows the relationship between reliability and control reconfigurability defined generally through Gramian controllability. An admissible solution for reconfigurability...

Robust and nonrobust tracking

Jan Štecha (1998)

Kybernetika

For zero steady state tracking error it is necessary to include n integrators in the control loop in the case of reference signal generated by n integrators. This result can be generalized to arbitrary n unstable modes of the reference generator according to the “internal model principle”. This paper shows an alternative solution of the asymptotic reference signal tracking problem using feedforward. The solution is not robust but gives a feedback controller with reduced complexity. Robust tracking...

Robust and reliable H output feedback control for linear systems with parameter uncertainty and actuator failure

Chang-Jun Seo, Byung Kook Kim (1999)

Kybernetika

The robust and reliable H output feedback controller design problem is investigated for uncertain linear systems with actuator failures within a prespecified subset of actuators. The uncertainty considered here is time- varying norm-bounded parameter uncertainty in the state matrix. The output of a faulty actuator is assumed to be any arbitrary energy-bounded signal. An observer-based output feedback controller design is presented which stabilizes the plant and guarantees an H -norm bound on attenuation...

Robust Control of Linear Stochastic Systems with Fully Observable State

Alexander Poznyak, M. Taksar (1996)

Applicationes Mathematicae

We consider a multidimensional linear system with additive inputs (control) and Brownian noise. There is a cost associated with each control. The aim is to minimize the cost. However, we work with the model in which the parameters of the system may change in time and in addition the exact form of these parameters is not known, only intervals within which they vary are given. In the situation where minimization of a functional over the class of admissible controls makes no sense since the value of...

Robust controller design for linear polytopic systems

Vojtech Veselý (2006)

Kybernetika

The paper addresses the problem of the robust output feedback controller design with a guaranteed cost and parameter dependent Lyapunov function for linear continuous time polytopic systems. Two design methods based on improved robust stability conditions are proposed. Numerical examples are given to illustrate the effectiveness of the proposed methods. The obtained results are compared with other three design procedures.

Currently displaying 301 – 320 of 421