Assigning the invariant factors by feedback
For linear periodic discrete-time systems the analysis of the model error introduced by a truncation on the balanced minimal realization is performed, and a bound for the infinity norm of the model error is introduced. The results represent an extension to the periodic systems of the well known results on the balanced truncation for time-invariant systems. The general case of periodically time-varying state-space dimension has been considered.
We survey the so-called behavioral approach to systems and control theory, which was founded by J. C. Willems and his school. The central idea of behavioral systems theory is to put the focus on the set of trajectories of a dynamical system rather than on a specific set of equations modelling the underlying phenomenon. Moreover, all signal components are treated on an equal footing at first, and their partition into inputs and outputs is derived from the system law, in a way that admits several...
The paper consists of two parts. In the first part, new canonical forms are defined for singular 1D linear systems and a procedure to determine nonsingular matrices transforming matrices of singular systems to their canonical forms is derived. In the second part new canonical forms of matrices of the singular 2D Roesser model are defined and a procedure for determining realisations in canonical forms for a given 2D transfer function is presented. Necessary and sufficient conditions for the existence...
In this paper a complete presentation is given of a new canonical representation of multi-input, multi-output linear stochastic systems. Its equivalence with operator form directly linked with ARMA processes as well as with classical state space representation is given, and a transfer matrix interpretation is developed in an example. The importance of the new representation is mainly in the fact that in the joint state and parameters estimation problem, all unknown parameters appear linearly when...
In this paper we investigate some of the computational aspects of generic properties of linear structured systems. In such systems only the zero/nonzero pattern of the system matrices is assumed to be known. For structured systems a number of characterizations of so-called generic properties have been obtained in the literature. The characterizations often have been presented by means of the graph associated to a linear structured system and are then expressed in terms of the maximal or minimal...
Considering a controllable, square, linear multivariable system, which is decouplable by static state feedback, we completely characterize in this paper the structure of the decoupled closed-loop system. The family of all attainable transfer function matrices for the decoupled closed-loop system is characterized, which also completely establishes all possible combinations of attainable finite pole and zero structures. The set of assignable poles as well as the set of fixed decoupling poles are determined,...
The problem of computing minimal realizations of a singular system decomposed into a standard dynamical system and a static system of a given improper transfer matrix is formulated and solved. A new notion of the minimal dynamical-static realization is introduced. It is shown that there always exists a minimal dynamical-static realization of a given improper transfer matrix. A procedure for the computation of a minimal dynamical-static realization for a given improper transfer matrix is proposed...
This paper presents an algebraic design theory for interconnected systems. Usual multivariable linear systems are described in a unified way. Both square and nonsquare plants and controllers are included in the study and an easy characterization of the achievable I/O (input-to-output) and D/O (disturbance-to-output) maps is presented through the use of appropriate controllers. Sufficient conditions of stability are given.