Robust quasi-linear system identification
Systems with time-varying non-linearity confined to a given sector (Luré type) and a linear part with uncertainty formulated by an interval transfer function, are considered. Sufficient conditions satisfying the Popov criterion for stability, which are computationally tractable, are derived. The problem of checking the Popov criterion for an infinite set of systems, is reduced to that of checking the Popov criterion for a finite number of fixed coefficient systems, each in a prescribed frequency...
The nonlinear control techniques are applied to the model of rotary inverted pendulum. The model has two degrees of freedom and is not exactly linearizable. The goal is to control output trajectory of the rotary inverted pendulum asymptotically along a desired reference. Moreover, the designed controller should be robust with respect to specified perturbations and parameters uncertainties. A combination of techniques based on nonlinear normal forms, output regulation and sliding mode approach is...
This paper investigates a safe consensus problem for cooperative-competitive multi-agent systems using a differential privacy (DP) approach. Considering that the agents simultaneously interact cooperatively and competitively, we propose a novel DP bipartite consensus algorithm, which guarantees that the DP strategy only works on competitive pairs of agents. We then prove that the proposed algorithm can achieve the mean square bipartite consensus and -accuracy. Furthermore, a differential privacy...
The structural properties of self-bounded controlled invariant subspaces are fundamental to the synthesis of a dynamic feedforward compensator achieving insensitivity of the controlled output to a disturbance input accessible for measurement, on the assumption that the system is stable or pre-stabilized by an inner feedback. The control system herein devised has several important features: i) minimum order of the feedforward compensator; ii) minimum number of unassignable dynamics internal to the...
By means of a result on the semi-global C1 solution, we establish the exact boundary controllability for the reducible quasilinear hyperbolic system if the C1 norm of initial data and final state is small enough.
In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.
In this paper, we study the local stabilization problem of a class of planar nonlinear systems by means of an estimated state feedback law. Our approach is to use a bilinear approximation to establish a separation principle.
The paper considers a set membership joint estimation of variables and parameters in complex dynamic networks based on parametric uncertain models and limited hard measurements. A recursive estimation algorithm with a moving measurement window is derived that is suitable for on-line network monitoring. The window allows stabilising the classic recursive estimation algorithm and significantly improves estimate tightness. The estimator is validated on a case study regarding a water distribution network....
The paper presents a simple mathematical model called a coupled map lattice (CML). For some range of its parameters, this model generates complex, spatiotemporal behavior which seems to be chaotic. The main purpose of the paper is to provide results of stability analysis and compare them with those obtained from numerical simulation. The indirect Lyapunov method and Lyapunov exponents are used to examine the dependence on initial conditions. The net direction phase is introduced to measure the symmetry...
The paper studies the problem of lowering the orders of input derivatives in nonlinear generalized state equations via generalized coordinate transformation. An alternative, computation-oriented proof is presented for the theorem, originally proved by Delaleau and Respondek, giving necessary and sufficient conditions for existence of such a transformation, in terms of commutativity of certain vector fields. Moreover, the dual conditions in terms of 1-forms have been derived, allowing to calculate...