Approximate controllability of a hydro-elastic coupled system
We analyze the controllability of the motion of a fluid by means of the action of a vibrating shell coupled at the boundary of the fluid. The model considered is linear. We study its approximate controllability, i.e. whether the fluid may reach a dense set of final configurations at a given time. We show that this problem can be reduced to a unique continuation question for the Stokes system. We prove that this unique continuation property holds generically among analytic domains and therefore,...
In this paper we consider an approximate controllability problem for linear parabolic equations with rapidly oscillating coefficients in a periodically perforated domain. The holes are -periodic and of size . We show that, as , the approximate control and the corresponding solution converge respectively to the approximate control and to the solution of the homogenized problem. In the limit problem, the approximation of the final state is alterated by a constant which depends on the proportion...
In this paper we consider an approximate controllability problem for linear parabolic equations with rapidly oscillating coefficients in a periodically perforated domain. The holes are ε-periodic and of size ε. We show that, as ε → 0, the approximate control and the corresponding solution converge respectively to the approximate control and to the solution of the homogenized problem. In the limit problem, the approximation of the final state is alterated by a constant which depends on the proportion...
We consider a hybrid, one-dimensional, linear system consisting in two flexible strings connected by a point mass. It is known that this system presents two interesting features. First, it is well posed in an asymmetric space in which solutions have one more degree of regularity to one side of the point mass. Second, that the spectral gap vanishes asymptotically. We prove that the first property is a consequence of the second one. We also consider a system in which the point mass is replaced...
In this paper we study linear conservative systems of finite dimension coupled with an infinite dimensional system of diffusive type. Computing the time-derivative of an appropriate energy functional along the solutions helps us to prove the well-posedness of the system and a stability property. But in order to prove asymptotic stability we need to apply a sufficient spectral condition. We also illustrate the sharpness of this condition by exhibiting some systems for which we do not have the asymptotic...
In this paper we study linear conservative systems of finite dimension coupled with an infinite dimensional system of diffusive type. Computing the time-derivative of an appropriate energy functional along the solutions helps us to prove the well-posedness of the system and a stability property. But in order to prove asymptotic stability we need to apply a sufficient spectral condition. We also illustrate the sharpness of this condition by exhibiting some systems for which we do not have the asymptotic property. ...
The paper deals with a boundary control problem for the Maxwell dynamical system in a bounbed domain Ω ⊂ R3. Let ΩT ⊂ Ω be the subdomain filled by waves at the moment T, T* the moment at which the waves fill the whole of Ω. The following effect occurs: for small enough T the system is approximately controllable in ΩT whereas for larger T < T* a lack of controllability is possible. The subspace of unreachable states is of finite dimension determined by topological characteristics of ΩT.
We consider transmission problems for general second order linear hyperbolic systems having piecewise constant coefficients in a bounded, open connected set with smooth boundary and controlled through the Dirichlet boundary condition. It is proved that such a system is exactly controllable in an appropriate function space provided the interfaces where the coefficients have a jump discontinuity are all star-shaped with respect to one and the same point and the coefficients satisfy a certain...