Page 1

Displaying 1 – 11 of 11

Showing per page

Particle filter with adaptive sample size

Ondřej Straka, Miroslav Šimandl (2011)

Kybernetika

The paper deals with the particle filter in state estimation of a discrete-time nonlinear non-Gaussian system. The goal of the paper is to design a sample size adaptation technique to guarantee a quality of a filtering estimate produced by the particle filter which is an approximation of the true filtering estimate. The quality is given by a difference between the approximate filtering estimate and the true filtering estimate. The estimate may be a point estimate or a probability density function...

Periodic systems largely system equivalent to periodic discrete-time processes

Osvaldo Maria Grasselli, Sauro Longhi, Antonio Tornambè (2001)

Kybernetika

In this paper, the problem of obtaining a periodic model in state-space form of a linear process that can be modeled by linear difference equations with periodic coefficients is considered. Such a problem was already studied and solved in [r71] on the basis of the notion of system equivalence, but under the assumption that the process has no null characteristic multiplier. In this paper such an assumption is removed in order to generalize the results in [r71] to linear periodic processes with possibly...

Pipelined architectures for the Frequency Domain linear equalizer

George Glentis, Kristina Georgoulakis (2006)

International Journal of Applied Mathematics and Computer Science

In this paper, novel pipelined architectures for the implementation of the frequency domain linear equalizer are presented. The Frequency Domain (FD) LMS algorithm is utilized for the adaptation of equalizer coefficients. The pipelining of the FD LMS linear equalizer is achieved by introducing an amount of time delay into the original adaptive scheme, and following proper delay retiming. Simulation results are presented that illustrate the performance of the effect of the time delay introduced into...

Positive 2D discrete-time linear Lyapunov systems

Przemysław Przyborowski, Tadeusz Kaczorek (2009)

International Journal of Applied Mathematics and Computer Science

Two models of positive 2D discrete-time linear Lyapunov systems are introduced. For both the models necessary and sufficient conditions for positivity, asymptotic stability, reachability and observability are established. The discussion is illustrated with numerical examples.

Positive partial realization problem for linear discrete-time systems

Tadeusz Kaczorek (2007)

International Journal of Applied Mathematics and Computer Science

A partial realization problem for positive linear discrete-time systems is addressed. Sufficient conditions for the existence of its solution are established. A procedure for the computation of a positive partial realization for a given finite sequence of the values of the impulse response is proposed. The procedure is illustrated by four numerical examples.

Positivity and stability of fractional descriptor time-varying discrete-time linear systems

Tadeusz Kaczorek (2016)

International Journal of Applied Mathematics and Computer Science

The Weierstrass-Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor timevarying discrete-time linear systems. A method for computing solutions of fractional systems is proposed. Necessary and sufficient conditions for the positivity of these systems are established.

Positivity and stabilization of fractional 2D linear systems described by the Roesser model

Tadeusz Kaczorek, Krzysztof Rogowski (2010)

International Journal of Applied Mathematics and Computer Science

A new class of fractional 2D linear discrete-time systems is introduced. The fractional difference definition is applied to each dimension of a 2D Roesser model. Solutions of these systems are derived using a 2D Z-transform. The classical Cayley-Hamilton theorem is extended to 2D fractional systems described by the Roesser model. Necessary and sufficient conditions for the positivity and stabilization by the state-feedback of fractional 2D linear systems are established. A procedure for the computation...

Currently displaying 1 – 11 of 11

Page 1