Displaying 21 – 40 of 46

Showing per page

Exponential stability of nonlinear systems with event-triggered schemes and its application

Zhang Li, Gang Yu, Yanjun Shen (2021)

Kybernetika

In this paper, we discuss exponential stability for nonlinear systems with sampled-data-based event-triggered schemes. First, a framework is proposed to analyze exponential stability for nonlinear systems under some different triggering conditions. Based on these results, output feedback exponential stabilization is investigated for a class of inherently nonlinear systems under a kind of event-triggered strategies. Finally, the rationality of the theoretical work is verified by numerical simulations....

Flow control in connection-oriented networks: a time-varying sampling period system case study

Przemysław Ignaciuk, Andrzej Bartoszewicz (2008)

Kybernetika

In this paper congestion control problem in connection-oriented communication network with multiple data sources is addressed. In the considered network the feedback necessary for the flow regulation is provided by means of management units, which are sent by each source once every M data packets. The management units, carrying the information about the current network state, return to their origin round trip time RTT after they were sent. Since the source rate is adjusted only at the instant of...

Fuzzy empirical distribution function: Properties and application

Gholamreza Hesamian, S. M. Taheri (2013)

Kybernetika

The concepts of cumulative distribution function and empirical distribution function are investigated for fuzzy random variables. Some limit theorems related to such functions are established. As an application of the obtained results, a method of handling fuzziness upon the usual method of Kolmogorov-Smirnov one-sample test is proposed. We transact the α -level set of imprecise observations in order to extend the usual method of Kolmogorov-Smirnov one-sample test. To do this, the concepts of fuzzy...

Globally uniformly ultimately bounded observer design for a class of nonlinear systems with sampled and delayed measurements

Daoyuan Zhang, Yanjun Shen, Xiao Hua Xia (2016)

Kybernetika

In this paper, we consider two kinds of sampled-data observer design for a class of nonlinear systems. The system output is sampled and transmitted under two kinds of truncations. Firstly, we present definitions of the truncations and the globally uniformly ultimately bounded observer, respectively. Then, two kinds of observers are proposed by using the delayed measurements with these two truncations, respectively. The observers are hybrid in essence. For the first kind of observers, by constructing...

Hybrid stabilization of discrete-time LTI systems with two quantized signals

Guisheng Zhai, Yuuki Matsumoto, Xinkai Chen, Joe Imae, Tomoaki Kobayashi (2005)

International Journal of Applied Mathematics and Computer Science

We consider stabilizing a discrete-time LTI (linear time-invariant) system via state feedback where both the quantized state and control input signals are involved. The system under consideration is stabilizable and stabilizing state feedback has been designed without considering quantization, but the system's stability is not guaranteed due to the quantization effect. For this reason, we propose a hybrid quantized state feedback strategy asymptotically stabilizing the system, where the values of...

Improving the stability of discretization zeros with the Taylor method using a generalization of the fractional-order hold

Cheng Zeng, Shan Liang, Yuzhe Zhang, Jiaqi Zhong, Yingying Su (2014)

International Journal of Applied Mathematics and Computer Science

Remarkable improvements in the stability properties of discrete system zeros may be achieved by using a new design of the fractional-order hold (FROH) circuit. This paper first analyzes asymptotic behaviors of the limiting zeros, as the sampling period T tends to zero, of the sampled-data models on the basis of the normal form representation for continuous-time systems with a new hold proposed. Further, we also give the approximate expression of limiting zeros of the resulting sampled-data system...

Particle filter with adaptive sample size

Ondřej Straka, Miroslav Šimandl (2011)

Kybernetika

The paper deals with the particle filter in state estimation of a discrete-time nonlinear non-Gaussian system. The goal of the paper is to design a sample size adaptation technique to guarantee a quality of a filtering estimate produced by the particle filter which is an approximation of the true filtering estimate. The quality is given by a difference between the approximate filtering estimate and the true filtering estimate. The estimate may be a point estimate or a probability density function...

Planning identification experiments for cell signaling pathways: An NFκB case study

Krzysztof Fujarewicz (2010)

International Journal of Applied Mathematics and Computer Science

Mathematical modeling of cell signaling pathways has become a very important and challenging problem in recent years. The importance comes from possible applications of obtained models. It may help us to understand phenomena appearing in single cells and cell populations on a molecular level. Furthermore, it may help us with the discovery of new drug therapies. Mathematical models of cell signaling pathways take different forms. The most popular way of mathematical modeling is to use a set of nonlinear...

Robust Observer-based control of switched nonlinear systems with quantized and sampled output

Carlos Perez, Manuel Mera (2015)

Kybernetika

This paper deals with the robust stabilization of a class of nonlinear switched systems with non-vanishing bounded perturbations. The nonlinearities in the systems satisfy a quasi-Lipschitz condition. An observer-based linear-type switching controller with quantized and sampled output signal is considered. Using a dwell-time approach and an extended version of the invariant ellipsoid method (IEM) sufficient conditions for stability in a practical sense are derived. These conditions are represented...

Robust sampled-data observer design for Lipschitz nonlinear systems

Yu Yu, Yanjun Shen (2018)

Kybernetika

In this paper, a robust sampled-data observer is proposed for Lipschitz nonlinear systems. Under the minimum-phase condition, it is shown that there always exists a sampling period such that the estimation errors converge to zero for whatever large Lipschitz constant. The optimal sampling period can also be achieved by solving an optimal problem based on linear matrix inequalities (LMIs). The design methods are extended to Lipschitz nonlinear systems with large external disturbances as well. In...

Significance tests to identify regulated proteins based on a large number of small samples

Frank Klawonn (2012)

Kybernetika

Modern biology is interested in better understanding mechanisms within cells. For this purpose, products of cells like metabolites, peptides, proteins or mRNA are measured and compared under different conditions, for instance healthy cells vs. infected cells. Such experiments usually yield regulation or expression values – the abundance or absence of a cell product in one condition compared to another one – for a large number of cell products, but with only a few replicates. In order to distinguish...

Currently displaying 21 – 40 of 46