Displaying 21 – 40 of 41

Showing per page

Geometry of non-holonomic diffusion

Simon Hochgerner, Tudor S. Ratiu (2015)

Journal of the European Mathematical Society

We study stochastically perturbed non-holonomic systems from a geometric point of view. In this setting, it turns out that the probabilistic properties of the perturbed system are intimately linked to the geometry of the constraint distribution. For G -Chaplygin systems, this yields a stochastic criterion for the existence of a smooth preserved measure. As an application of our results we consider the motion planning problem for the noisy two-wheeled robot and the noisy snakeboard.

Global finite-time observers for a class of nonlinear systems

Yunyan Li, Yanjun Shen, Xiao Hua Xia (2013)

Kybernetika

Global finite-time observers are designed for a class of nonlinear systems with bounded varying rational powers imposed on the increments of the nonlinearities whose solutions exist and are unique for all positive time. The global finite-time observers designed in this paper are with two homogeneous terms. The global finite-time convergence of the observation error system is achieved by combining global asymptotic stability and local finite-time stability.

Global non-negative controllability of the semilinear parabolic equation governed by bilinear control

Alexander Y. Khapalov (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global approximate controllability of the one dimensional semilinear convection-diffusion-reaction equation governed in a bounded domain via the coefficient (bilinear control) in the additive reaction term. Clearly, even in the linear case, due to the maximum principle, such system is not globally or locally controllable in any reasonable linear space. It is also well known that for the superlinear terms admitting a power growth at infinity the global approximate controllability by...

Global non-negative controllability of the semilinear parabolic equation governed by bilinear control

Alexander Y. Khapalov (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the global approximate controllability of the one dimensional semilinear convection-diffusion-reaction equation governed in a bounded domain via the coefficient (bilinear control) in the additive reaction term. Clearly, even in the linear case, due to the maximum principle, such system is not globally or locally controllable in any reasonable linear space. It is also well known that for the superlinear terms admitting a power growth at infinity the global approximate controllability by...

Global output feedback stabilization for nonlinear fractional order time delay systems

Hanen Benali (2021)

Kybernetika

This paper investigates the problem of global stabilization by state and output-feedback for a family of for nonlinear Riemann-Liouville and Caputo fractional order time delay systems written in triangular form satisfying linear growth conditions. By constructing a appropriate Lyapunov-Krasovskii functional, global asymptotic stability of the closed-loop systems is achieved. Moreover, sufficient conditions for the stability, for the particular class of fractional order time-delay system are obtained....

Global stability analysis and control of leptospirosis

Kazeem Oare Okosun, M. Mukamuri, Daniel Oluwole Makinde (2016)

Open Mathematics

The aim of this paper is to investigate the effectiveness and cost-effectiveness of leptospirosis control measures, preventive vaccination and treatment of infective humans that may curtail the disease transmission. For this, a mathematical model for the transmission dynamics of the disease that includes preventive, vaccination, treatment of infective vectors and humans control measures are considered. Firstly, the constant control parameters’ case is analyzed, also calculate the basic reproduction...

Global stability of linearizing control with a new robust nonlinear observer of the induction motor

Mohammed Chenafa, Abdellah Mansouri, Abderrahmane Bouhenna, Eric Etien, Abdelkader Belaidi, Mouloud Denai (2005)

International Journal of Applied Mathematics and Computer Science

This paper mainly deals with the design of an advanced control law with an observer for a special class of nonlinear systems. We design an observer with a gain as a function of speed. We study the solution to the output feedback torque and rotor flux-tracking problem for an induction motor model given in the natural frame. We propose a new robust nonlinear observer and prove the global stability of the interlaced controller-observer system. The control algorithm is studied through simulations and...

Global synchronization of chaotic Lur’e systems via replacing variables control

Xiaofeng Wu, Yi Zhao, Muhong Wang (2008)

Kybernetika

Finding sufficient criteria for synchronization of master-slave chaotic systems by replacing variables control has been an open problem in the field of chaos control. This paper presents some recent works on the subject, with emphasis on chaos synchronization of both identical and parametrically mismatched Lur’e systems by replacing variables control. The synchronization schemes are formally constructed and two classes of sufficient criteria for global synchronization, linear matrix inequality criterion...

Globally uniformly ultimately bounded observer design for a class of nonlinear systems with sampled and delayed measurements

Daoyuan Zhang, Yanjun Shen, Xiao Hua Xia (2016)

Kybernetika

In this paper, we consider two kinds of sampled-data observer design for a class of nonlinear systems. The system output is sampled and transmitted under two kinds of truncations. Firstly, we present definitions of the truncations and the globally uniformly ultimately bounded observer, respectively. Then, two kinds of observers are proposed by using the delayed measurements with these two truncations, respectively. The observers are hybrid in essence. For the first kind of observers, by constructing...

Goodman-Kruskal Measure of Association for Fuzzy-Categorized Variables

S. M. Taheri, Gholamreza Hesamian (2011)

Kybernetika

The Goodman-Kruskal measure, which is a well-known measure of dependence for contingency tables, is generalized to the case when the variables of interest are categorized by linguistic terms rather than crisp sets. In addition, to test the hypothesis of independence in such contingency tables, a novel method of decision making is developed based on a concept of fuzzy p -value. The applicability of the proposed approach is explained using a numerical example.

Gradient observability for diffusion systems

El Hassane Zerrik, Hamid Bourray (2003)

International Journal of Applied Mathematics and Computer Science

The aim of this paper is to study regional gradient observability for a diffusion system and the reconstruction of the state gradient without the knowledge of the state. First, we give definitions and characterizations of these new concepts and establish necessary conditions for the sensor structure in order to obtain regional gradient observability. We also explore an approach which allows for a regional gradient reconstruction. The developed method is original and leads to a numerical algorithm...

Graphics processing units in acceleration of bandwidth selection for kernel density estimation

Witold Andrzejewski, Artur Gramacki, Jarosław Gramacki (2013)

International Journal of Applied Mathematics and Computer Science

The Probability Density Function (PDF) is a key concept in statistics. Constructing the most adequate PDF from the observed data is still an important and interesting scientific problem, especially for large datasets. PDFs are often estimated using nonparametric data-driven methods. One of the most popular nonparametric method is the Kernel Density Estimator (KDE). However, a very serious drawback of using KDEs is the large number of calculations required to compute them, especially to find the...

Currently displaying 21 – 40 of 41