Minimax state estimation for linear stochastic systems with an uncertain parameter
A minimum energy control problem for fractional positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the problem is proposed and illustrated with a numerical example.
The minimum energy control problem for positive continuous-time linear systems with bounded inputs is formulated and solved. Sufficient conditions for the existence of a solution to the problem are established. A procedure for solving the problem is proposed and illustrated with a numerical example.
In this paper, the mobile robot localization problem is investigated under the stochastic communication protocol (SCP). In the mobile robot localization system, the measurement data including the distance and the azimuth are received by multiple sensors equipped on the robot. In order to relieve the network burden caused by network congestion, the SCP is introduced to schedule the transmission of the measurement data received by multiple sensors. The aim of this paper is to find a solution to the...
Estimating the state of a hybrid system means accounting for the mode of operation or failure and the current state of the continuously valued entities concurrently. Existing hybrid estimation schemes try to overcome the problem of an exponentially growing number of possible mode-sequence/continuous-state combinations by merging hypotheses and/or deducing likelihood measures to identify tractable sets of the most likely hypotheses. However, they still suffer from unnecessarily high computational...
Design of model following control system (MFCS) for nonlinear system with time delays and disturbances is discussed. In this paper, the method of MFCS will be extended to nonlinear system with time delays. We set the nonlinear part of the controlled object as , and show the bounded of internal states by separating the nonlinear part into . Some preliminary numerical simulations are provided to demonstrate the effectiveness of the proposed method.
Introduction of fly-by-wire and increasing levels of automation significantly improve the safety of civil aircraft, and result in advanced capabilities for detecting, protecting and optimizing A/C guidance and control. However, this higher complexity requires the availability of some key flight parameters to be extended. Hence, the monitoring and consolidation of those signals is a significant issue, usually achieved via many functionally redundant sensors to extend the way those parameters are...
The problem of fault tolerant control is studied from the behavioral point of view. In this mathematical framework, the concept of interconnection among the variables describing the system is a key point. The problem is that the behavior we intend to control is not known. Therefore, we are interested in designing a fault accommodation scheme for an unknown behavior through an appropriate behavioral interconnection. Here we deal simply with the trajectories that are generated by the system in real...
A mathematical model of a 4-wheel skid-steering mobile robot is presented in a systematic way. The robot is considered as a subsystem consisting of kinematic, dynamic and drive levels. Next, a designing process of a kinematic controller based on the algorithm introduced by (Dixon et al., 2001) is shown. An extension of the kinematic control law at the dynamic and motor levels using the Lyapunov analysis and the backstepping technique is developed. To validate the designed algorithm, extensive simulation...
This paper is devoted to the modeling and control of the induction motor. The well-established field oriented control is recalled and two recent control strategies are exposed, namely the passivity-based control and the flatness-based control.
The paper introduces a method of mathematical modeling of high scale road traffic networks, where a new special hypermatrix structure is intended to be used. The structure describes the inner-inner, inner-outer and outer-outer relations, and laws of a network area. The research examines the nonlinear equation system. The analysed model can be applied to the testing and planning of large-scale road traffic networks and the regulation of traffic systems. The elaborated model is in state space form,...