Displaying 41 – 60 of 71

Showing per page

Modeling of the temperature distribution of a greenhouse using finite element differential neural networks

Juan Carlos Bello-Robles, Ofelia Begovich, Javier Ruiz, Rita Quetziquel Fuentes-Aguilar (2018)

Kybernetika

Most of the existing works in the literature related to greenhouse modeling treat the temperature within a greenhouse as homogeneous. However, experimental data show that there exists a temperature spatial distribution within a greenhouse, and this gradient can produce different negative effects on the crop. Thus, the modeling of this distribution will allow to study the influence of particular climate conditions on the crop and to propose new temperature control schemes that take into account the...

Modelling and control in pseudoplate problem with discontinuous thickness

Ján Lovíšek (2009)

Applications of Mathematics

This paper concerns an obstacle control problem for an elastic (homogeneous) and isotropic) pseudoplate. The state problem is modelled by a coercive variational inequality, where control variable enters the coefficients of the linear operator. Here, the role of control variable is played by the thickness of the pseudoplate which need not belong to the set of continuous functions. Since in general problems of control in coefficients have no optimal solution, a class of the extended optimal control...

Modelling and control of an omnidirectional mobile manipulator

Salima Djebrani, Abderraouf Benali, Foudil Abdessemed (2012)

International Journal of Applied Mathematics and Computer Science

A new approach to control an omnidirectional mobile manipulator is developed. The robot is considered to be an individual agent aimed at performing robotic tasks described in terms of a displacement and a force interaction with the environment. A reactive architecture and impedance control are used to ensure reliable task execution in response to environment stimuli. The mechanical structure of our holonomic mobile manipulator is built of two joint manipulators mounted on a holonomic vehicle. The...

Modelling and optimal control of networked systems with stochastic communication protocols

Chaoqun Zhu, Bin Yang, Xiang Zhu (2020)

Kybernetika

This paper is concerned with the finite and infinite horizon optimal control issue for a class of networked control systems with stochastic communication protocols. Due to the limitation of networked bandwidth, only the limited number of sensors and actuators are allowed to get access to network mediums according to stochastic access protocols. A discrete-time Markov chain with a known transition probability matrix is employed to describe the scheduling behaviors of the stochastic access protocols,...

Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator

Rafał Łangowski, Mietek Brdys (2007)

International Journal of Applied Mathematics and Computer Science

This paper describes the design of an interval observer for the estimation of unmeasured quality state variables in drinking water distribution systems. The estimator utilizes a set bounded model of uncertainty to produce robust interval bounds on the estimated state variables of the water quality. The bounds are generated by solving two differential equations. Hence the numerical efficiency is sufficient for on-line monitoring of the water quality. The observer is applied to an exemplary water...

Monomial subdigraphs of reachable and controllable positive discrete-time systems

Rafael Bru, Louis Caccetta, Ventsi Rumchev (2005)

International Journal of Applied Mathematics and Computer Science

A generic structure of reachable and controllable positive linear systems is given in terms of some characteristic components (monomial subdigraphs) of the digraph of a non-negative a pair. The properties of monomial subdigraphs are examined and used to derive reachability and controllability criteria in a digraph form for the general case when the system matrix may contain zero columns. The graph-theoretic nature of these criteria makes them computationally more efficient than their known equivalents....

Motion planning and feedback control for a unicycle in a way point following task: The VFO approach

Maciej Michałek, Krzysztof Kozłowski (2009)

International Journal of Applied Mathematics and Computer Science

This paper is devoted to the way point following motion task of a unicycle where the motion planning and the closed-loop motion realization stage are considered. The way point following task is determined by the user-defined sequence of waypoints which have to be passed by the unicycle with the assumed finite precision. This sequence will take the vehicle from the initial state to the target state in finite time. The motion planning strategy proposed in the paper does not involve any interpolation...

Motion planning, equivalence, infinite dimensional systems

Pierre Rouchon (2001)

International Journal of Applied Mathematics and Computer Science

Motion planning, i.e., steering a system from one state to another, is a basic question in automatic control. For a certain class of systems described by ordinary differential equations and called flat systems (Fliess et al. 1995; 1999a), motion planning admits simple and explicit solutions. This stems from an explicit description of the trajectories by an arbitrary time function, the flat output, and a finite number of its time derivatives. Such explicit descriptions are related to old problems...

Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays

Frank Woittennek, Joachim Rudolph (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing Mikusiński’s...

Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays

Frank Woittennek, Joachim Rudolph (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing ...

Currently displaying 41 – 60 of 71