Displaying 21 – 40 of 268

Showing per page

On adaptive control for the continuous time-varying JLQG problem

Adam Czornik, Andrzej Świernik (2005)

International Journal of Applied Mathematics and Computer Science

In this paper the adaptive control problem for a continuous infinite time-varying stochastic control system with jumps in parameters and quadratic cost is investigated. It is assumed that the unknown coefficients of the system have limits as time tends to infinity and the boundary system is absolutely observable and stabilizable. Under these assumptions it is shown that the optimal value of the quadratic cost can be reached based only on the values of these limits, which, in turn, can be estimated...

On adaptive control of a partially observed Markov chain

Giovanni Di Masi, Łukasz Stettner (1994)

Applicationes Mathematicae

A control problem for a partially observable Markov chain depending on a parameter with long run average cost is studied. Using uniform ergodicity arguments it is shown that, for values of the parameter varying in a compact set, it is possible to consider only a finite number of nearly optimal controls based on the values of actually computable approximate filters. This leads to an algorithm that guarantees nearly selfoptimizing properties without identifiability conditions. The algorithm is based...

On additive and multiplicative (controlled) Poisson equations

G. B. Di Masi, Ł. Stettner (2006)

Banach Center Publications

Assuming that a Markov process satisfies the minorization property, existence and properties of the solutions to the additive and multiplicative Poisson equations are studied using splitting techniques. The problem is then extended to the study of risk sensitive and risk neutral control problems and corresponding Bellman equations.

On an invariant design of feedbacks for bilinear control systems of second order

Vasiliy Belozyorov (2001)

International Journal of Applied Mathematics and Computer Science

The problem of linear feedback design for bilinear control systems guaranteeing their conditional closed-loop stability is considered. It is shown that this problem can be reduced to investigating the conditional stability of solutions of quadratic systems of differential equations depending on parameters of the control law. Sufficient conditions for stability in the cone of a homogeneous quadratic system are obtained. For second-order systems, invariant conditions of conditional asymptotic stability...

On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays

Beata Sikora (2019)

Kybernetika

The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function f . The relative controllability of the presented semilinear system is discussed. Rothe’s fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time t > 0 is presented. A numerical...

On approximation of stability radius for an infinite-dimensional feedback control system

Hideki Sano (2016)

Kybernetika

In this paper, we discuss the problem of approximating stability radius appearing in the design procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical system. The calculation of stability radius needs the value of H -norm of a transfer function whose realization is described by infinite-dimensional operators in a Hilbert space. From the computational point of view, we need to prepare a family of approximate finite-dimensional operators and then to calculate...

On asymptotic exit-time control problems lacking coercivity

M. Motta, C. Sartori (2014)

ESAIM: Control, Optimisation and Calculus of Variations

The research on a class of asymptotic exit-time problems with a vanishing Lagrangian, begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact control case, is extended here to the case of unbounded controls and data, including both coercive and non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control problem and obtain regularity, characterization and approximation results for the value function of the problem....

On characterization of the solution set in case of generalized semiflow

Zdeněk Beran (2009)

Kybernetika

In the paper, a possible characterization of a chaotic behavior for the generalized semiflows in finite time is presented. As a main result, it is proven that under specific conditions there is at least one trajectory of generalized semiflow, which lies inside an arbitrary covering of the solution set. The trajectory mutually connects each subset of the covering. A connection with symbolic dynamical systems is mentioned and a possible numerical method of analysis of dynamical behavior is outlined....

On classification with missing data using rough-neuro-fuzzy systems

Robert K. Nowicki (2010)

International Journal of Applied Mathematics and Computer Science

The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described.

On control problems of minimum time for Lagrangian systems similar to a swing. I. Convexity criteria for sets

Aldo Bressan, Monica Motta (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

One establishes some convexity criteria for sets in R 2 . They will be applied in a further Note to treat the existence of solutions to minimum time problems for certain Lagrangian systems referred to two coordinates, one of which is used as a control. These problems regard the swing or the ski.

On control problems of minimum time for Lagrangian systems similar to a swing. II Application of convexity criteria to certain minimum time problems

Aldo Bressan, Monica Motta (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This Note is the Part II of a previous Note with the same title. One refers to holonomic systems Σ = A U with two degrees of freedom, where the part A can schemetize a swing or a pair of skis and U schemetizes whom uses A . The behaviour of U is characterized by a coordinate used as a control. Frictions and air resistance are neglected. One considers on Σ minimum time problems and one is interested in the existence of solutions. To this aim one determines a certain structural condition Γ which implies...

On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems

Aldo Bressan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

See Summary in Note I. First, on the basis of some results in [2] or [5]-such as Lemmas 8.1 and 10.1-the general (mathematical) theorems on controllizability proved in Note I are quickly applied to (mechanic) Lagrangian systems. Second, in case Σ , χ and M satisfy conditions (11.7) when 𝒬 is a polynomial in γ ˙ , conditions (C)-i.e. (11.8) and (11.7) with 𝒬 0 -are proved to be necessary for treating satisfactorily Σ 's hyper-impulsive motions (in which positions can suffer first order discontinuities)....

Currently displaying 21 – 40 of 268