Fitting traffic traces with discrete canonical phase type distributions and markov arrival processes
We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of two-input driftless systems. We illustrate our results...
We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of...
We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of...
In this paper, a generalized Motsch-Tadmor model with piecewise interaction functions and fixed processing delays is investigated. According to functional differential equation theory and correlation properties of the stochastic matrix, we obtained sufficient conditions for the system achieving flocking, including an upper bound of the time delay parameter. When the parameter is less than the upper bound, the system achieves asymptotic flocking under appropriate assumptions.
In this paper, we revisit the artificial potential based approach in the flocking control for multi-agent systems, where our main concerns are migration and trajectory tracking problems. The static destination or, more generally, the moving reference point is modeled by a virtual leader, whose information is utilized by some agents, called active agents (AA), for the controller design. We study a decentralized flocking controller for the case where the set of AAs is fixed. Some results on the velocity...
Two similar Laplacian-based models for swarms with informed agents are proposed and analyzed analytically and numerically. In these models, each individual adjusts its velocity to match that of its neighbors and some individuals are given a preferred heading direction towards which they accelerate if there is no local velocity consensus. The convergence to a collective group swarming state with constant velocity is analytically proven for a range of parameters and initial conditions. Using numerical...
In this paper congestion control problem in connection-oriented communication network with multiple data sources is addressed. In the considered network the feedback necessary for the flow regulation is provided by means of management units, which are sent by each source once every M data packets. The management units, carrying the information about the current network state, return to their origin round trip time RTT after they were sent. Since the source rate is adjusted only at the instant of...
Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35, 93B51; 03B42; 70Q05; 49N05This paper proposes a novel method to design an H∞ -optimal fractional order PID (FOPID) controller with ability to control the transient, steady-state response and stability margins characteristics. The method uses particle swarm optimization algorithm and operates based on minimizing a general cost function. Minimization of the cost function is carried out subject to the H∞ -norm; this norm is also...
The problem of existence of a forecast (or planning) horizon has been considered in many special models, more or less precisely. We specify and investigate this problem for families of cheapest paths in networks with weakly ordered nodes. In a discrete network, the standard forward algorithm finds the subnetwork generated by optimal paths. The proposed forward procedure reduces subnetworks such that the forecast horizon remains unchanged. Based on the final subnetwork, we have an answer to the forecast...
Interests in Closed-Loop Supply Chain (CLSC) issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies' capabilities in collecting End-of-Life (EOL) products, customers' interests...
In this paper, a survey of the state of the art and perspectives of two main lines of research in fuzzy control systems is presented: on one hand, the navas interpolative-functional line representing fuzzy systems as parameterized universal function approximators, thus applying nonlinear control and neural network paradigms; on the other hand, a logic-formal approach where fuzzy systems are analysed in terms of logic interpretations, exploring validation, consistency and completeness, uncertainty...
This paper presents a generalization of the Kalman filter for linear and nonlinear fractional order discrete state-space systems. Linear and nonlinear discrete fractional order state-space systems are also introduced. The simplified kalman filter for the linear case is called the fractional Kalman filter and its nonlinear extension is named the extended fractional Kalman filter. The background and motivations for using such techniques are given, and some algorithms are discussed. The paper also...
This paper studies the distributed consensus problem of high-order strict-feedback nonlinear multiagent systems. By employing the adaptive backstepping technique and switched system theory, a novel protocol is proposed for MASs with switched topologies. Global information such as the number of agents and communication topology is not used. In addition, the communication topology between agents can be switched between possible topologies at any time. Based on the Lyapunov function method, the proposed...