Displaying 41 – 60 of 79

Showing per page

Flat outputs of two-input driftless control systems

Shun-Jie Li, Witold Respondek (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of...

Flat outputs of two-input driftless control systems

Shun-Jie Li, Witold Respondek (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of...

Flocking control of multi-agent systems with application to nonholonomic multi-robots

Qin Li, Zhong-Ping Jiang (2009)

Kybernetika

In this paper, we revisit the artificial potential based approach in the flocking control for multi-agent systems, where our main concerns are migration and trajectory tracking problems. The static destination or, more generally, the moving reference point is modeled by a virtual leader, whose information is utilized by some agents, called active agents (AA), for the controller design. We study a decentralized flocking controller for the case where the set of AAs is fixed. Some results on the velocity...

Flocking with informed agents

Felipe Cucker, Cristián Huepe (2008)

MathematicS In Action

Two similar Laplacian-based models for swarms with informed agents are proposed and analyzed analytically and numerically. In these models, each individual adjusts its velocity to match that of its neighbors and some individuals are given a preferred heading direction towards which they accelerate if there is no local velocity consensus. The convergence to a collective group swarming state with constant velocity is analytically proven for a range of parameters and initial conditions. Using numerical...

Flow control in connection-oriented networks: a time-varying sampling period system case study

Przemysław Ignaciuk, Andrzej Bartoszewicz (2008)

Kybernetika

In this paper congestion control problem in connection-oriented communication network with multiple data sources is addressed. In the considered network the feedback necessary for the flow regulation is provided by means of management units, which are sent by each source once every M data packets. The management units, carrying the information about the current network state, return to their origin round trip time RTT after they were sent. Since the source rate is adjusted only at the instant of...

Fopid Controller Design for Robust Performance Using Particle Swarm Optimization

Zamani, Majid, Karimi-Ghartemani, Masoud, Sadati, Nasser (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33; 93C15, 93C55, 93B36, 93B35, 93B51; 03B42; 70Q05; 49N05This paper proposes a novel method to design an H∞ -optimal fractional order PID (FOPID) controller with ability to control the transient, steady-state response and stability margins characteristics. The method uses particle swarm optimization algorithm and operates based on minimizing a general cost function. Minimization of the cost function is carried out subject to the H∞ -norm; this norm is also...

Forecast horizon and planning horizon paths in time-indexed network

Stanisław Bylka (2006)

Banach Center Publications

The problem of existence of a forecast (or planning) horizon has been considered in many special models, more or less precisely. We specify and investigate this problem for families of cheapest paths in networks with weakly ordered nodes. In a discrete network, the standard forward algorithm finds the subnetwork generated by optimal paths. The proposed forward procedure reduces subnetworks such that the forecast horizon remains unchanged. Based on the final subnetwork, we have an answer to the forecast...

Forecasting return products in an integrated forward/reverse supply chain utilizing an ANFIS

D. Thresh Kumar, Hamed Soleimani, Govindan Kannan (2014)

International Journal of Applied Mathematics and Computer Science

Interests in Closed-Loop Supply Chain (CLSC) issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies' capabilities in collecting End-of-Life (EOL) products, customers' interests...

Formal validation of fuzzy control techniques. Perspectives.

Antonio Sala, Pedro Albertos (1999)

Mathware and Soft Computing

In this paper, a survey of the state of the art and perspectives of two main lines of research in fuzzy control systems is presented: on one hand, the navas interpolative-functional line representing fuzzy systems as parameterized universal function approximators, thus applying nonlinear control and neural network paradigms; on the other hand, a logic-formal approach where fuzzy systems are analysed in terms of logic interpretations, exploring validation, consistency and completeness, uncertainty...

Fractional kalman filter algorithm for the states parameters and order of fractional system estimation

Dominik Sierociuk, Andrzej Dzieliński (2006)

International Journal of Applied Mathematics and Computer Science

This paper presents a generalization of the Kalman filter for linear and nonlinear fractional order discrete state-space systems. Linear and nonlinear discrete fractional order state-space systems are also introduced. The simplified kalman filter for the linear case is called the fractional Kalman filter and its nonlinear extension is named the extended fractional Kalman filter. The background and motivations for using such techniques are given, and some algorithms are discussed. The paper also...

Functional observers design for nonlinear discrete-time systems with interval time-varying delays

Yali Dong, Laijun Chen, Shengwei Mei (2019)

Kybernetika

This paper is concerned with the functional observer design for a class of Multi-Input Multi-Output discrete-time systems with mixed time-varying delays. Firstly, using the Lyapunov-Krasovskii functional approach, we design the parameters of the delay-dependent observer. We establish the sufficient conditions to guarantee the exponential stability of functional observer error system. In addition, for design purposes, delay-dependent sufficient conditions are proposed in terms of matrix inequalities...

Further results on robust fuzzy dynamic systems with LMI 𝓓-stability constraints

Wudhichai Assawinchaichote (2014)

International Journal of Applied Mathematics and Computer Science

This paper examines the problem of designing a robust fuzzy controller with -stability constraints for a class of nonlinear dynamic systems which is described by a Takagi-Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear matrix inequality (LMI) approach, we develop a robust fuzzy controller that guarantees (i) the ₂-gain of the mapping from the exogenous input noise to the...

Currently displaying 41 – 60 of 79