The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The paper gives an account of research results concerning a project on creating a fully autonomous robotic decisionmaking system, able to interact with its environment and based on a mathematical model of human cognitive-behavioural psychology, with some key elements of personality psychology included. The principal idea of the paper is focused on the concept of needs, with a certain instrumental role of emotions.
Financial investors often face an urgent need to predict the future. Accurate forecasting may allow investors to be aware of changes in financial markets in the future, so that they can reduce the risk of investment. In this paper, we present an intelligent computing paradigm, called the Complex Neuro-Fuzzy System (CNFS), applied to the problem of financial time series forecasting. The CNFS is an adaptive system, which is designed using Complex Fuzzy Sets (CFSs) whose membership functions are complex-valued...
Interval analysis is a relatively new mathematical tool that allows one to deal with problems that may have to be solved numerically with a computer. Examples of such problems are system solving and global optimization, but numerous other problems may be addressed as well. This approach has the following general advantages: (a) it allows to find solutions of a problem only within some finite domain which make sense as soon as the unknowns in the problem are physical parameters; (b) numerical computer...
It is well–known that every system with commensurable delays can be assigned a finite spectrum by feedback, provided that it is spectrally controllable. In general, the feedback involves distributed delays, and it is defined in terms of a Volterra equation. In the case of multivariable time–delay systems, one would be interested in assigning not only the location of the poles of the closed–loop system, but also their multiplicities, or, equivalently, the invariant factors of the closed–loop system....
A control system is said to be finite if the Lie algebra generated by its vector fields
is finite dimensional. Sufficient conditions for such a system on a compact manifold to be
controllable are stated in terms of its Lie algebra. The proofs make use of the
equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010)
956–973]. and of the existence of an invariant measure on certain compact homogeneous
spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956–973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
A control system is said to be finite if the Lie algebra generated by its vector fields
is finite dimensional. Sufficient conditions for such a system on a compact manifold to be
controllable are stated in terms of its Lie algebra. The proofs make use of the
equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010)
956–973]. and of the existence of an invariant measure on certain compact homogeneous
spaces.
The problem of invariant output tracking is considered: given a control system admitting a symmetry group , design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of . Invariant output errors are defined as a set of scalar invariants of ; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required...
The problem of invariant output tracking is considered: given a control system
admitting a symmetry group G, design a feedback such that the
closed-loop system tracks a desired output reference and is invariant under the action of G.
Invariant output errors are defined as a set
of scalar invariants of G; they are calculated with the Cartan moving frame
method. It is shown that standard tracking methods based on input-output linearization can be applied to
these invariant errors to yield the...
We consider inverse optimal control for linearizable nonlinear systems with input delays based on predictor control. Under a continuously reversible change of variable, a nonlinear system is transferred to a linear system. A predictor control law is designed such that the closed-loop system is asymptotically stable. We show that the basic predictor control is inverse optimal with respect to a differential game. A mechanical system is provided to illustrate the effectiveness of the proposed method....
Currently displaying 41 –
60 of
67