Displaying 81 – 100 of 125

Showing per page

Discrete-time predictive control with overparameterized delay-plant models and an identified cancellation order

Zdzisław Kowalczuk, Piotr Suchomski (2005)

International Journal of Applied Mathematics and Computer Science

The paper presents several solutions to the discrete-time generalized predictive (GPC) controller problem, including an anticipative filtration mechanism, which are suitable for plants with nonzero transportation delays. Necessary modifications of the GPC design procedure required for controlling plants based on their non-minimal models are discussed in detail. Although inevitably invoking the troublesome pole-zero cancellation problem, such models can be used in adaptive systems as a remedy for...

Discrete-time state description of pure deadtime processes

Václav Soukup (1999)

Kybernetika

This contribution deals with the discrete-time linear state models of pure deadtime multi-input, multi-output dynamic processes. A straightforward way is presented to obtain minimum-dimensional state realizations of these processes.

Discretization schemes for Lyapunov-Krasovskii functionals in time-delay systems

Keqin Gu (2001)

Kybernetika

This article gives an overview of discretized Lyapunov functional methods for time-delay systems. Quadratic Lyapunov–Krasovskii functionals are discretized by choosing the kernel to be piecewise linear. As a result, the stability conditions may be written in the form of linear matrix inequalities. Conservatism may be reduced by choosing a finer mesh. Simplification techniques, including elimination of variables and using integral inequalities are also discussed. Systems with multiple delays and...

Distributed consensus control for discrete-time linear multi-agent systems with reduced-order observer

Wenhai Chen, Lixin Gao, Xiaole Xu, Bingbing Xu (2015)

Kybernetika

In this paper, we investigate multi-agent consensus problem with discrete-time linear dynamics under directed interaction topology. By assumption that all agents can only access the measured outputs of its neighbor agents and itself, a kind of distributed reduced-order observer-based protocols are proposed to solve the consensus problem. A multi-step algorithm is provided to construct the gain matrices involved in the protocols. By using of graph theory, modified discrete-time algebraic Riccati...

Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays

Jiangping Hu, Guanrong Chen, Han-Xiong Li (2011)

Kybernetika

As embedded microprocessors are applied widerly to multi-agent systems, control scheduling and time-delay problems arose in the case of limited energy and computational ability. It has been shown that the event-triggered actuation strategy is an effective methodology for designing distributed control of multi-agent systems with limited computational resources. In this paper, a tracking control problem of leader-follower multi-agent systems with/without communication delays is formulated and a distributed...

Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey

Derui Ding, Qing-Long Han, Xiaohua Ge (2020)

Kybernetika

Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in...

Distributed output regulation for linear multi-agent systems with unknown leaders

Xinghu Wang, Haibo Ji, Chuanrui Wang (2013)

Kybernetika

In this paper, the distributed output regulation problem of linear multi-agent systems with parametric-uncertain leaders is considered. The existing distributed output regulation results with exactly known leader systems is not applicable. To solve the leader-following with unknown parameters in the leader dynamics, a distributed control law based on an adaptive internal model is proposed and the convergence can be proved.

Distributed resilient filtering of large-scale systems with channel scheduling

Lili Xu, Sunjie Zhang, Licheng Wang (2020)

Kybernetika

This paper addresses the distributed resilient filtering for discrete-time large-scale systems (LSSs) with energy constraints, where their information are collected by sensor networks with a same topology structure. As a typical model of information physics systems, LSSs have an inherent merit of modeling wide area power systems, automation processes and so forth. In this paper, two kinds of channels are employed to implement the information transmission in order to extend the service time of sensor...

Distributed scheduling of sensor networks for identification of spatio-temporal processes

Maciej Patan (2012)

International Journal of Applied Mathematics and Computer Science

An approach to determine a scheduling policy for a sensor network monitoring some spatial domain in order to identify unknown parameters of a distributed system is discussed. Given a finite number of possible sites at which sensors are located, the activation schedule for scanning sensors is provided so as to maximize a criterion defined on the Fisher information matrix associated with the estimated parameters. The related combinatorial problem is relaxed through operating on the density of sensors...

Currently displaying 81 – 100 of 125