Displaying 1201 – 1220 of 2294

Showing per page

Motion planning for a class of boundary controlled linear hyperbolic PDE’s involving finite distributed delays

Frank Woittennek, Joachim Rudolph (2003)

ESAIM: Control, Optimisation and Calculus of Variations

Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing Mikusiński’s...

Motion planning for a class of boundary controlled linear hyperbolic PDE's involving finite distributed delays

Frank Woittennek, Joachim Rudolph (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Motion planning and boundary control for a class of linear PDEs with constant coefficients is presented. With the proposed method transitions from rest to rest can be achieved in a prescribed finite time. When parameterizing the system by a flat output, the system trajectories can be calculated from the flat output trajectory by evaluating definite convolution integrals. The compact kernels of the integrals can be calculated using infinite series. Explicit formulae are derived employing ...

Motion planning for a nonlinear Stefan problem

William B. Dunbar, Nicolas Petit, Pierre Rouchon, Philippe Martin (2003)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a free boundary problem for a nonlinear parabolic partial differential equation. In particular, we are concerned with the inverse problem, which means we know the behavior of the free boundary a priori and would like a solution, e.g. a convergent series, in order to determine what the trajectories of the system should be for steady-state to steady-state boundary control. In this paper we combine two issues: the free boundary (Stefan) problem with a quadratic nonlinearity....

Motion Planning for a nonlinear Stefan Problem

William B. Dunbar, Nicolas Petit, Pierre Rouchon, Philippe Martin (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a free boundary problem for a nonlinear parabolic partial differential equation. In particular, we are concerned with the inverse problem, which means we know the behavior of the free boundary a priori and would like a solution, e.g. a convergent series, in order to determine what the trajectories of the system should be for steady-state to steady-state boundary control. In this paper we combine two issues: the free boundary (Stefan) problem with a quadratic nonlinearity....

Motion representations for the Lafferriere-Sussmann algorithm for nilpotent control systems

Ignacy Dulęba, Jacek Jagodziński (2011)

International Journal of Applied Mathematics and Computer Science

In this paper, an extension of the Lafferriere-Sussmann algorithm of motion planning for driftless nilpotent control systems is analyzed. It is aimed at making more numerous admissible representations of motion in the algorithm. The representations allow designing a shape of trajectories joining the initial and final configuration of the motion planning task. This feature is especially important in motion planning in a cluttered environment. Some natural functions are introduced to measure the shape...

Motor control neural models and systems theory

Kenji Doya, Hidenori Kimura, Aiko Miyamura (2001)

International Journal of Applied Mathematics and Computer Science

In this paper, we introduce several system theoretic problems brought forward by recent studies on neural models of motor control. We focus our attention on three topics: (i) the cerebellum and adaptive control, (ii) reinforcement learning and the basal ganglia, and (iii) modular control with multiple models. We discuss these subjects from both neuroscience and systems theory viewpoints with the aim of promoting interplay between the two research communities.

Necessary and sufficient conditions for stabilization of expanding systems servomechanism problems

Dibyendu Baksi, Kanti B. Datta, Goshaidas Ray (2003)

Kybernetika

The problem of designing realistic decentralized controller to solve a servomechanism problem in the framework of “large scale systems” is considered in this paper. As any large scale system is built by expanding construction of one subsystem being connected to the existing system. In particular, it is desired to find a local stabilizing controller in terms of a free parameter (belonging to the ring of proper stable transfer functions) so that desirable properties of the controlled system, such...

Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization

Iasson Karafyllis, Zhong-Ping Jiang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this work, we propose a methodology for the expression of necessary and sufficient Lyapunov-like conditions for the existence of stabilizing feedback laws. The methodology is an extension of the well-known Control Lyapunov Function (CLF) method and can be applied to very general nonlinear time-varying systems with disturbance and control inputs, including both finite and infinite-dimensional systems. The generality of the proposed methodology is also reflected upon by the fact that partial...

Currently displaying 1201 – 1220 of 2294