Displaying 1301 – 1320 of 2294

Showing per page

Null controllability of the heat equation in unbounded domains by a finite measure control region

Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Motivated by two recent works of Micu and Zuazua and Cabanillas, De Menezes and Zuazua, we study the null controllability of the heat equation in unbounded domains, typically + or N . Considering an unbounded and disconnected control region of the form ω : = n ω n , we prove two null controllability results: under some technical assumption on the control parts ω n , we prove that every initial datum in some weighted L 2 space can be controlled to zero by usual control functions, and every initial datum in L 2 ( Ω ) can...

Null controllability of the heat equation in unbounded domains by a finite measure control region

Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Motivated by two recent works of Micu and Zuazua and Cabanillas, De Menezes and Zuazua, we study the null controllability of the heat equation in unbounded domains, typically + or  N . Considering an unbounded and disconnected control region of the form ω : = n ω n , we prove two null controllability results: under some technical assumption on the control parts ω n , we prove that every initial datum in some weighted L2 space can be controlled to zero by usual control functions, and every initial datum in L2(Ω)...

Null controllability of the semilinear heat equation

E. Fernandez-Cara (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with the null controllability of systems governed by semilinear parabolic equations. The control is exerted either on a small subdomain or on a portion of the boundary. We prove that the system is null controllable when the nonlinear term f(s) grows slower than s . log|s| as |s| → ∞.

Null-controllability of some systems of parabolic type by one control force

Farid Ammar Khodja, Assia Benabdallah, Cédric Dupaix, Ilya Kostin (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We study the null controllability by one control force of some linear systems of parabolic type. We give sufficient conditions for the null controllability property to be true and, in an abstract setting, we prove that it is not always possible to control.

Null-controllability of some systems of parabolic type by one control force

Farid Ammar Khodja, Assia Benabdallah, Cédric Dupaix, Ilya Kostin (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the null controllability by one control force of some linear systems of parabolic type. We give sufficient conditions for the null controllability property to be true and, in an abstract setting, we prove that it is not always possible to control.

Numerical solution of the pressing devices shape optimization problem in the glass industry

Petr Salač (2018)

Applications of Mathematics

In this contribution, we present the problem of shape optimization of the plunger cooling which comes from the forming process in the glass industry. We look for a shape of the inner surface of the insulation barrier located in the plunger cavity so as to achieve a constant predetermined temperature on the outward surface of the plunger. A rotationally symmetric system, composed of the mould, the glass piece, the plunger, the insulation barrier and the plunger cavity, is considered. The state problem...

Observability and observers for nonlinear systems with time delays

Luis Alejandro Márquez-Martínez, Claude H. Moog, Martín Velasco-Villa (2002)

Kybernetika

Basic properties on linearization by output injection are investigated in this paper. A special structure is sought which is linear up to a suitable output injection and under a suitable change of coordinates. It is shown how an observer may be designed using theory available for linear time delay systems.

Observability inequalities and measurable sets

Jone Apraiz, Luis Escauriaza, Gengsheng Wang, C. Zhang (2014)

Journal of the European Mathematical Society

This paper presents two observability inequalities for the heat equation over Ω × ( 0 , T ) . In the first one, the observation is from a subset of positive measure in Ω × ( 0 , T ) , while in the second, the observation is from a subset of positive surface measure on Ω × ( 0 , T ) . It also proves the Lebeau-Robbiano spectral inequality when Ω is a bounded Lipschitz and locally star-shaped domain. Some applications for the above-mentioned observability inequalities are provided.

Currently displaying 1301 – 1320 of 2294