On the consistency of a least squares identification procedure
Linear stationary dynamical systems with multiple constant delays in the state are studied. Their relative and approximate controllability properties with constrained controls are discussed. Definitions of various types of controllability with constrained controls for systems with delays in the state are introduced. Some theorems concerning the relative and the approximate relative controllability with constrained controls for dynamical systems with delays in the state are established. Various types...
In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law which...
In this work we are interested in the study of controllability and stabilization of the linearized Benjamin-Ono equation with periodic boundary conditions, which is a generic model for the study of weakly nonlinear waves with nonlocal dispersion. It is well known that the Benjamin-Ono equation has infinite number of conserved quantities, thus we consider only controls acting in the equation such that the volume of the solution is conserved. We study also the stabilization with a feedback law...
For boundary or distributed controls, we get an approximate controllability result for the Navier-Stokes equations in dimension 2 in the case where the fluid is incompressible and slips on the boundary in agreement with the Navier slip boundary conditions.
We present here a return method to describe some attainable sets on an interval of the classical Burger equation by means of the variation of the domain.
The boundary approximate controllability of the Laplace equation observed on an interior curve is studied in this paper. First we consider the Laplace equation with a bounded potential. The Lp (1 < p < ∞) approximate controllability is established and controls of Lp-minimal norm are built by duality. At this point, a general result which clarifies the relationship between this duality approach and the classical optimal control theory is given. The results are extended to the Lp (1≤...
In this paper further results on the development of a S CILAB compatible software package for the analysis and control of repetitive processes is described. The core of the package consists of a simulation tool which enables the user to inspect the response of a given example to an input, design a control law for stability and/or performance, and also simulate the response of a controlled process to a specified reference signal.
In the present paper optimal time-invariant state feedback controllers are designed for a class of discrete time-varying control systems with Markov jumping parameter and quadratic performance index. We assume that the coefficients have limits as time tends to infinity and the boundary system is absolutely observable and stabilizable. Moreover, following the same line of reasoning, an adaptive controller is proposed in the case when system parameters are unknown but their strongly consistent estimators...
We study the dynamic behavior and stability of two connected Rayleigh beams that are subject to, in addition to two sensors and two actuators applied at the joint point, one of the actuators also specially distributed along the beams. We show that with the distributed control employed, there is a set of generalized eigenfunctions of the closed-loop system, which forms a Riesz basis with parenthesis for the state space. Then both the spectrum-determined growth condition and exponential stability...