Matrix measure and application to stability of matrices and interval dynamical systems.
New necessary and sufficient conditions for asymptotic stability of positive continuous-discrete 2D linear systems are established. Necessary conditions for the stability are also given. The stability tests are demonstrated on numerical examples.
A method to derive a nonlinear bounded state feedback controller for a linear continuous-time system with time-delay in the state is proposed. The controllers are based on an -parameterized family of algebraic Riccati equations or on an -parameterized family of LMI optimization problems. Hence, nested ellipsoidal neighborhoods of the origin are determined. Thus, from the Lyapunov–Krasovskii theorem, the uniform asymptotic stability of the closed-loop system is guaranteed and a certain performance...
In this paper we consider a nonlinear model of a biological wastewater treatment process, based on two microbial populations and two substrates. The model, described by a four-dimensional dynamic system, is known to be practically verified and reliable. First we study the equilibrium points of the open-loop system, their stability and local bifurcations with respect to the control variable. Further we propose a feedback control law for asymptotic stabilization of the closed-loop system towards a...
A combined, parametric-nonparametric identification algorithm for a special case of NARMAX systems is proposed. The parameters of individual blocks are aggregated in one matrix (including mixed products of parameters). The matrix is estimated by an instrumental variables technique with the instruments generated by a nonparametric kernel method. Finally, the result is decomposed to obtain parameters of the system elements. The consistency of the proposed estimate is proved and the rate of convergence...
The problem of observer design for a class of nonlinear discrete-time systems with time-delay is considered. A new approach of nonlinear observer design is proposed for the class of systems. Based on differential mean value theory, the error dynamic is transformed into linear parameter variable system. By using Lyapunov stability theory and Schur complement lemma, the sufficient conditions expressed in terms of matrix inequalities are obtained to guarantee the observer error converges asymptotically...
This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Examples illustrate the...
This paper shows that a large class of chaotic systems, introduced in [S. Čelikovský and G. Chen: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system [G. Chen and T. Ueta: Yet another chaotic attractor....
This paper considers the problem of designing an observer-based output feedback controller to exponentially stabilize a class of linear systems with an interval time-varying delay in the state vector. The delay is assumed to vary within an interval with known lower and upper bounds. The time-varying delay is not required to be differentiable, nor should its lower bound be zero. By constructing a set of Lyapunov-Krasovskii functionals and utilizing the Newton-Leibniz formula, a delay-dependent stabilizability...
The research on a class of asymptotic exit-time problems with a vanishing Lagrangian, begun in [M. Motta and C. Sartori, Nonlinear Differ. Equ. Appl. Springer (2014).] for the compact control case, is extended here to the case of unbounded controls and data, including both coercive and non-coercive problems. We give sufficient conditions to have a well-posed notion of generalized control problem and obtain regularity, characterization and approximation results for the value function of the problem....
Homogeneous quadratic polynomials in complex variables are investigated and various necessary and sufficient conditions are given for to be nonzero in the set . Conclusions for the theory of multivariable positive real functions are formulated with applications in multivariable electrical network theory.
This paper focuses on the problem of uniform asymptotic stability of a class of linear neutral systems including some constant delays and time-varying cone-bounded nonlinearities. Sufficient stability conditions are derived by taking into account the weighting factors describing the nonlinearities. The proposed results are applied to the stability analysis of a class of lossless transmission line models.
Let be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...
Let be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke's generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...